č tapestri tapestri PRIMING 75% Time Remaining: 19:40 **Tapestri**[®] Status: Runnin Single-Cell ? **DNA + Protein** Sequencing mission bio User Guide AML | CLL | Myeloid **Tumor Hotspot | Custom**

Moving precision medicine FORWARD.

For Research Use Only. Not for use in diagnostic procedure.

Information in this publication is subject to change without notice. It is Mission Bio policy to improve products as new techniques and components become available. Therefore, Mission Bio reserves the right to change specifications at any time. Every effort has been made to avoid errors in the text, diagrams, illustrations, figures, and screen captures. However, Mission Bio assumes no responsibility for any errors or omissions. In no event shall Mission Bio be liable for any damages in connection with or arising from the use of this publication.

Trademarks.

© 2020 Mission Bio, Inc. All rights reserved. Duplication, public display, public performance, modification, or any other use of all or any portion of this document without the express prior written consent of Mission Bio is strictly forbidden. "Mission Bio" and the "MB" logo are trademarks of Mission Bio and may not be used for any purpose without the express prior written consent of Mission Bio. All other trademarks are the property of their respective owners.

Nothing in this documentation shall constitute a warranty, express or implied, as to the products (whether a product of Mission Bio, its affiliates, or any third party) or any protocols described herein, whether as to performance, accuracy, sufficiency, non-infringement, or otherwise. All warranties, if any, are set forth in the applicable terms and conditions of sale accompanying the purchase of Mission Bio's product. Without limiting the forgoing, Mission Bio and its affiliates provide no warranty and hereby disclaim any and all warranties as to the use of any third party products or protocols described herein.

The use or resale of the products described herein may be subject to certain restrictions as set forth in the applicable terms and conditions of sale accompanying the purchase of such product.

All products and services described herein are intended FOR RESEARCH USE ONLY and NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Contact. Mission Bio, Inc. 6000 Shoreline Ct Ste 104 South San Francisco, CA 94080 USA www.missionbio.com

For technical support visit https://support.missionbio.com. Email: support@missionbio.com

Table of Contents

Introduction	3
About This Guide	3
Tapestri Platform Overview	3
Materials	5
Protocol Overview	10
Best Practices: Emulsion & DNA Cartridge	11
Gene Panels	13
Thermal Cycling Programs	14
Cell Handling Guidelines	15
Genomic Protocol	17
1 Prepare Cell Suspension	17
2 Encapsulate Cells	.22
3 Lyse and Digest Cells	.26
4 Barcode Cells	.28
5 UV Treatment and Targeted PCR Amplification	. 34
6 Cleanup PCR Products	. 38
7 PCR Target Library	. 43
8 Quantify and Normalize Sequencing Library	. 48
9 Sequence Library	.52
Troubleshooting	.55
Appendices	. 57

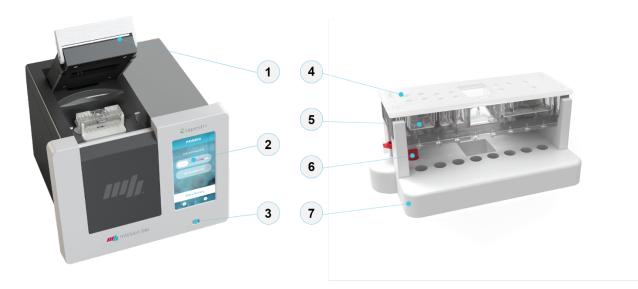
Introduction

The *Mission Bio Tapestri® Platform* uses microfluidic droplet technology to combine cell lysate with barcoding beads anchored to gene specific primers to deliver a high-throughput single-cell genomics workflow for targeted DNA sequencing. Users can produce sequencing-ready libraries starting from a single cell suspension in as few as 2 days. This User Guide describes the experimental procedure in detail.

About This Guide

This User Guide describes the experimental procedure when using the *Mission Bio Tapestri Platform* for DNA/Protein applications.

Tapestri Platform Overview


The *Tapestri Platform* consists of the instrument itself, the DNA cartridge, which represents the microfluidics device, and reagents. The cartridge is equipped with reservoirs that are used to load reagents required for automated cell processing. Pressure supplied by the instrument drives the fluidics from the reservoirs through the microfluidic device out to PCR collection tubes that are mounted below the cartridge. The assembled cartridge and tubes can be loaded and unloaded from the instrument and disposed after the completion of the workflow.

The Tapestri Instrument is designed to receive the loaded cartridge and drive the fluidics with programmed, pressurized air. The instrument seals the cartridge using a lid over the top of a loaded cartridge via a rubber gasket and levered handle. The user interacts with the instrument via a touch screen interface, which can be used to select programs, monitor the status of running programs, and more.

Tapestri Instrument

Tapestri DNA Cartridge (assembled)

Figure 1. Tapestri Platform: Instrument and Assembled DNA Cartridge (Tapestri Single-Cell DNA AML Kit not shown, instrument color may vary)

1 Lid Levered lid to open and close the instrument and install the DNA Cartridge. 2 Touchscreen To interface with the instrument's software and select programs. **(3) USB Port** (on back panel in some instruments) To export diagnostics data. 4 Tapestri DNA Gasket To seal the instrument lid. 5) Tapestri DNA Cartridge Microfluidics device to load with reagents and cells. 6 Collection Tubes To collect emulsions. Base Plate 7) Foundation to mount DNA Cartridge and collection tubes.

Materials

Tapestri Single-Cell DNA + Protein Core Kit Configuration

		Part Number			
Component Name	AML	MYE	THP	Custom	Storage
Tapestri Single-Cell DNA Core Ambient Kit v2	MB51-0007			RT	
Tapestri Single-Cell DNA Core -20 Kit v2	MB51-0010			-20°C	
Tapestri Single-Cell DNA Bead Kit	MB51-0009			4°C	
Tapestri Protein Staining Kit		MB51-0017			4°C

Tapestri Single-Cell DNA Oligo Pools

Component Name	Part Number	Storage
Tapestri Single-Cell DNA AML Oligo Pool	MB03-0035	-20°C
Tapestri Single-Cell DNA CLL Oligo Pool	MB03-0038	-20°C
Tapestri Single-Cell DNA MYE Oligo Pool	MB03-0036	-20°C
Tapestri Single-Cell DNA THP Oligo Pool	MB03-0037	-20°C
Tapestri Single-Cell DNA 1-100 Amplicons Oligo Pool (Quantity for 4 Tapestri Core Kits)	MB03-0039	-20°C
Tapestri Single-Cell DNA 101-200 Amplicons Oligo Pool (Quantity for 4 Tapestri Core Kits)	MB03-0040	-20°C
Tapestri Single-Cell DNA 201-300 Amplicons Oligo Pool (Quantity for 4 Tapestri Core Kits)	MB03-0041	-20°C
Tapestri Single-Cell DNA 301-400 Amplicons Oligo Pool (Quantity for 4 Tapestri Core Kits)	MB03-0042	-20°C
Tapestri Single-Cell DNA 401-500 Amplicons Oligo Pool (Quantity for 4 Tapestri Core Kits)	MB03-0043	-20°C
Tapestri Single-Cell DNA Custom Amplicons Oligo Pool (Quantity for 4 Tapestri Core Kits)	MB03-0044	-20°C

Tapestri Single-Cell DNA Core/Custom Kit Components

Component Name	Kit	Storage
Cell Buffer		RT
Encapsulation Oil		RT
Electrode Solution	Tapestri Single-Cell DNA Core Ambient Kit	RT
Barcoding Oil		RT
Extraction Agent (green cap)		RT
Lysis Buffer (brown cap)		-20°C
Barcoding Mix V2		-20°C
Library Mix V2		-20°C
V2 Index Primer 1 – 8 (purple cap)	Tapestri Single-Cell DNA Core -20 Kit	-20°C
DNA Clean up Buffer		-20°C
Clean up Enzyme		-20°C
Barcoding Beads (blue cap)	Tapestri Single-Cell DNA Bead Kit	4°C
Fwd Primer Pool (white cap)		-20°C
Rev Primer Pool (black cap)	AML, MYE, THP, CLL, Custom	-20 C
Tapestri DNA Cartridge (2 x 4x)	Tapastri Singla Call DNA Cartridge Kit	RT
Tapestri DNA Gasket (2 x 4x)	– Tapestri Single-Cell DNA Cartridge Kit	RT

NOTE Make sure to use non-frost free freezers for all -20°C reagent storage.

NOTE Please contact Mission Bio Support (*support@missionbio.com*) when interested in Custom Kit Reagents.

Tapestri Protein Staining Kit Reagents

Component Name	Kit	Storage
Blocking Buffer (orange cap)	– Tapestri Protein Staining Kit	4°C
Antibody Tag Primer (red cap)		4°C
 Biotin Oligo (blue cap) 		4°C
Streptavidin Beads (brown cap)		4°C
2x Wash Buffer		4°C
Protein Primer Indices 1-8 (yellow cap)		4°C

Required Third Party Consumable Reagents

Component Name	Suggested Supplier (Part Number)	Protocol Step
TotalSeq [™] -D Heme Oncology Cocktail	BioLegend (399906)	Cell Staining
Human TruStain FcX (Fc Receptor Blocking Solution)	BioLegend (422301)	Cell Staining
Cell Staining Buffer	BioLegend (420201)	Cell Staining
AMPure XP Reagent	Beckman Coulter (A63880)	Targeted PCR, Library PCR
Qubit [®] dsDNA HS Assay Kit	Qubit [®] (Q32851)	Targeted PCR
Ethanol, Molecular Biology Grade	Sigma (E7023)	AMPure purification
Agilent DNA 1000 Kit Agilent DNA High Sensitivity Kit	Agilent Technologies (5067-1504) Agilent Technologies (5067-4626)	Library PCR
Trypan Blue	Thermo Fisher (15250061)	Dead cell staining
Propidium Iodide	Thermo Fisher (P3566)	Dead cell staining
TipOne RPT ultra low retention filter tip	USA Scientific (1180-8810) or Approved Supplier	Liquid handling
200 μL Wide bore tip, rack, sterile 1000 μL Wide bore tip, rack, sterile	USA Scientific (1011-8410) USA Scientific (1011-9410)	Cell handling
Flowmi™ Cell Strainers for 1000 μL pipette tips, 40 μm	Fisher Scientific (14-100-150)	Cell handling

1.5 mL DNA low-bind Microcentrifuge Tubes	Eppendorf (0030108035)	Cell/Reagent handling
0.2 mL PCR Tubes	USA Scientific (1402-8120) or Approved Supplier	Non-emulsion PCR
* 0.2 mL Axygen MAXYmum Recovery PCR Tubes	Axygen (PCR-02-L-C)	Emulsion handling
Axygen Gel Tips	Axygen (TGL200RD57R) or Approved Supplier	Emulsion handling
Qubit Assay Tubes	Thermo Fisher (Q32856)	Post PCR quantitation
15 mL DNA low-bind conical tubes	Eppendorf (30122208)	Protein
1.5 mL Protein low-bind tubes	Eppendorf (22431081)	Protein
KAPA Library Quantification Kit Illumina Platforms (OPTIONAL)	КАРА (КК4873)	Sequencing
Sequencing Reagent Kit 300 cycles (150bp PE) (MiSeq, HiSeq 2500, HiSeq 4000, NextSeq 550/1000/2000, NovaSeq 6000)	Illumina	Sequencing

Required Third Party Consumable Reagents (continued)

NOTE * These consumables are used for handling emulsion samples and must not be substituted. Only listed consumables have been validated by Mission Bio.

Required Benchtop Equipment

Required Equipment	Suggested Supplier (Part Number)
MB Tapestri Instrument	Mission Bio (191335)
Countess [®] II Automated Cell Counter or equivalent	Thermo Fisher (AMQAX1000)
Fluorescence microscope (optional)	Thermo Fisher or Approved Supplier
Centrifuge with temperature control and swinging bucket (needs to support 15 mL conical tubes)	Eppendorf (5810 R) or Alternative Supplier
Agilent 2100 Bioanalyzer or Tapestation	Bioanalyzer: Agilent (G2939BA)
Qubit Fluorometer	Qubit: Thermo Fisher (Q33216)
Pipettes, 1 μL – 1000 μL	Mettler-Toledo, Rainin Pipettes
Microcentrifuge (1.5 mL, 0.2 mL PCR tubes) with temperature control	Thermo Fisher (75004081)
Tube Vortexer	Thermo Fisher (88880017TS)
Thermal cycler with heated lid (100 μL volume, needs to support ramp rates between 1°C/s – 4°C/s)	Thermo Fisher (A24811) or Approved Supplier
ThermoMixer	Eppendorf (5382000023) or Approved Supplier
Rotating Shaker (Hulamixer)	Thermo Fisher (15920D)
0.2 mL 8-strip PCR tube Magnetic Separation Stand	Seqmatic (TM-700) or Approved Supplier
6-Tube Magnetic Separation Rack	New England Biolabs (S1506S)
MiSeq Sequencing Instrument [Optional]	Illumina
HiSeq 2500 Sequencing Instrument [Optional]	Illumina
HiSeq 4000 Sequencing Instrument [Optional]	Illumina
NextSeq 550 Sequencing Instrument [Optional]	Illumina
NovaSeq 6000 Sequencing Instrument [Optional]	Illumina

Protocol Overview

Single cells stained with oligo-tagged antibodies are individually partitioned into sub-nanoliter droplets. Barcoding Beads and PCR reagents are introduced using the Mission Bio Tapestri Instrument and DNA Cartridge. Cell lysis, protease digestion, cell barcoding and targeted amplification using multiplexed PCR occur within the droplets. Droplets are then disrupted, and barcoded DNA is extracted for Library Amplification. The Protein library is separated from the DNA library by biotinylated oligo pull-out. Protein and DNA libraries are indexed and amplified separately. Final libraries are purified and can be sequenced on one of the supported Illumina Sequencer instruments.

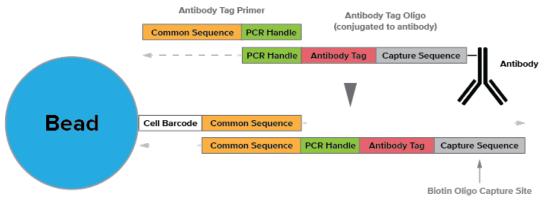
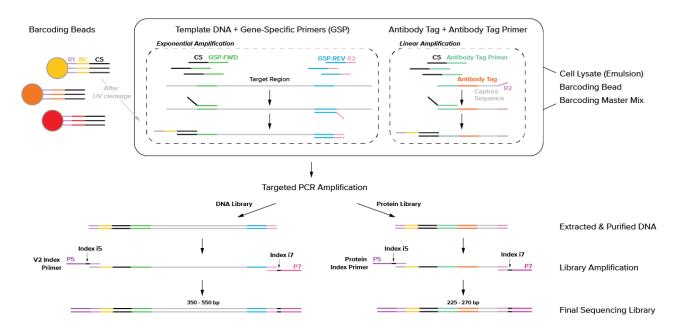



Figure 2. Antibody Tag Oligo construct.

Figure 3. Overview of library construction. R1: Read 1, BC: barcode, CS: common sequence GSP-FWD: gene-specific forward primer, GSP-REV = gene-specific reverse primer, P5: P5 Illumina adapter, P7: P7 Illumina adapter.

Best Practices: Emulsion & DNA Cartridge

Cell Culture, Pre- and Post-PCR areas

- All cell sample preparation must be conducted in a designated area that is restricted to cell culture work.
- All Pre-PCR steps (encapsulation, barcoding, PCR master mix preparation) must be conducted in a lab space that is physically separated from amplified genetic material.
- All Post-PCR (amplified material) steps (library PCR, library purification, DNA quantification, sample pooling) must be conducted in a lab space that is physically separated from the unamplified genetic material.
- Do not transfer material (gloves, pipettes, tubes) or equipment from the Post-PCR area to the Pre-PCR area.
- Carefully clean bench areas and pipettes with 5% bleach before starting any protocol.

Cross-contamination

- When pipetting samples, change tips between samples.
- Use aerosol-resistant (filtered) pipette tips to reduce the risk of reagent carryover and sampleto-sample cross-contamination.

Suggestions for working with emulsions

- Consumables (gel tips, emulsion safe PCR tubes) have been carefully tested and specified.
 Do not substitute.
- Pipette emulsions very slowly and carefully and only when necessary.
- Avoid sources of static and any excess handling of emulsion samples
- Handle emulsion sample tubes carefully. Avoiding direct contact with the sidewall of the tube, where emulsions directly interface and hold tubes on the lid instead.

Cell Recovery

If the number of cells after staining and cell washing is below the recommended minimum concentration of 3,000 cells/ μ L, we suggest optimizing the workflow by following any of the adjustments listed below:

- Verify 1 million cells were used by counting the cells with an alternate method.
- Increase the time of centrifugation for washes 2 4 from 5 minutes to 7 10 minutes.
- Always pipette slowly and carefully when removing the supernatant and leave at least 0.5 mL of residual volume in the tube between the washing steps.

Suggestions for working with the Tapestri Instrument and DNA Cartridge

The DNA cartridge is equipped with microfluidics channels that are as small as 40 µm and are used to transport reagents and cells. Care should be taken to avoid introduction of particles, fibers or clumped cells into cartridge that may potentially clog the cartridge. Minimize exposure of the instrument, reagents, cartridges, gaskets to sources of particles and fibers, such as open reagent reservoirs, laboratory wipes, clothing that easily sheds fibers, and dusty surfaces. Place DNA cartridges into original packaging after Encapsulation or Barcoding is completed. Lower the instrument lid when DNA cartridges are mounted on the instrument and are not in use.

Pay attention to the timing of loading the DNA cartridge and running the Encapsulation or Barcoding programs. Experimental steps should be executed successively as outlined in the protocol without delays.

Ensure that the instrument is not placed near a ventilation system or similar sources of high airflow. For additional information about requirements of the instrument's placement consult the **Tapestri Instrument Site Requirements Guide (PN 65307)**.

Gene Panels

AML Panel (20 Genes, 127 Amplicons)

ASXL1	GATA2	KIT	PTPN11	TP53
DNMT3A	IDH1	KRAS	RUNX1	U2AF1
EZH2	IDH2	NPM1	SF3B1	WT1
FLT3	JAK2	NRAS	SRSF2	TET2

CLL Panel (32 Genes, 274 Amplicons)

ATM	CD79B	EZH2	MED12	POT1	XPO1
BCOR	CHD2	FAT1	MYD88	RPS15	ZMYM3
BIRC3	CREBBP	FBXW7	NFKBIE	SETD2	
BRAF	CXCR4	KRAS	NOTCH1	SF3B1	
BTK	DDX3X	LRP1B	NRAS	SPEN	
CARD11	EGR2	MAP2K1	PLCG2	TP53	

Myeloid Panel (45 Genes, 312 Amplicons)

ASXL1	DNMT3A	IDH2	MYD88	RAD21	TET2
ATM	ERG	JAK2	NF1	RUNX1	TP53
BCOR	ETV6	KDM6A	NPM1	SETBP1	U2AF1
BRAF	EZH2	KIT	NRAS	SF3B1	WT1
CALR	FLT3	KMT2A	PHF6	SMC1A	ZRSR2
CBL	GATA2	KRAS	PPM1D	SMC3	
CHEK2	GNAS	MPL	PTEN	STAG2	
CSF3R	IDH1	MYC	PTPN11	STAT3	

Tumor Hotspot Panel (59 Genes, 244 Amplicons)

ABL1	CSF1R	FGFR1	IDH2	MLH1	RB1
AKT1	CTNNB1	FGFR2	JAK1	MPL	RET
ALK	DDR2	FGFR3	JAK2	MTOR	SMAD4
APC	EGFR	FLT3	JAK3	NOTCH1	SMARCB1
AR	ERBB2	GNA11	KDR	NRAS	SMO
ATM	ERBB3	GNAQ	KIT	PDGFRA	SRC
BRAF	ERBB4	GNAS	KRAS	PI3KCA	STK11
CDH1	ESR1	HNF1A	MAP2K1	PTEN	TP53
CDK4	EZH2	HRAS	MAP2K2	PTPN11	VHL
CDKN2A	FBXW7	IDH1	MET	RAF1	

Thermal Cycling Programs

Always use a properly calibrated thermal cycler suited for 0.2 mL tubes with a maximum reaction volume of 100 μ L for all incubations. Program all four thermal cycling protocols from **Tables I1** into the instrument. For all protocols, use a heated lid set to 100 °C – 105 °C. For specific instrument operation, follow the instructions provided by the manufacturer.

1. Cell Lysis and Protein Digest			3. Enzymatic Cleanup		4. Library PCR				
Step	Temperature	Time	Step	Temperature	Time	Step	Temperature	Time	Cycle
1	50 °C	60 min	1	37 °C	60 min	1	95 °C	3 min	
2	80 ℃	10 min	2	4 °C	HOLD	2	98 °C	20 sec	
3	4 °C	HOLD				3	62 °C	20 sec	DNA 10 PROT 20
	·					4	72 °C	45 sec	
						5	72 °C	2 min	

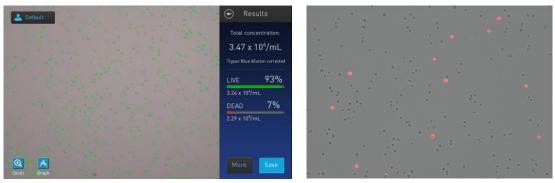
6

4 °C

HOLD

			2. Targeted PCR				
Amplicon Number		20 – 100	101 – 200	201 – 300	> 300		
Catalog Panel		N/A	AML	THP/CLL	MYE		
Step	Ramp Rate	Temperature	Time	Time	Time	Time	Cycle
1	4 °C/s	98 °C	6 min	6 min	6 min	6 min	
2		95 °C	30 sec	30 sec	30 sec	30 sec	
3	- 1°C/s	72 °C	10 sec	10 sec	10 sec	10 sec	11
4		61 °C	3 min	4.5 min	6 min	9 min	
5		72 °C	20 sec	20 sec	20 sec	20 sec	
6	- 1°C/s	95 °C	30 sec	30 sec	30 sec	30 sec	
7		72 °C	10 sec	10 sec	10 sec	10 sec	13
8		48 °C	3 min	4.5 min	6 min	9 min	CI
9		72 °C	20 sec	20 sec	20 sec	20 sec	
10	- 4 °C/s	72 °C	2 min	2 min	2 min	2 min	
11		4 °C	HOLD	HOLD	HOLD	HOLD	

Tables I1. Thermal cycling programs.



Cell Handling Guidelines

The steps provided in this protocol are applicable to non-adherent cells from culture, bone marrow aspirates and buffy coat fractions. If other cell types will be used, contact *support@missionbio.com* for additional support. Different cell types may require revised procedures including cell dissociation, washing, re-suspension or quantitation.

Cell counting

- Mission Bio strongly recommends the use of an automated cell counter, such as the Countess II Automated Cell Counter (Thermo Fisher).
- Optimal concentration range for cell counting with the Countess II ranges from 1×10^5 to 4×10^6 cells/mL.
- Final cell suspensions are measured at least twice. Concentrations found must agree within 10%.
- Cell suspensions must have > 90% viability. Mission Bio recommends Propidium Iodide, rather than Trypan Blue for measuring viability (see below).
- Final cell concentration values are based on the total (live + dead) cell counts.
- Avoid the use of samples containing significant debris, dead cells, or fragments of lysed cells.
- Example images of a well-prepared single cell suspension quantified with Trypan Blue (left) and Pl (right) are shown below.

Figure 5. Representative images of high-quality cell suspension measured with Trypan Blue (left) and Pl (right).

Cell death assessment using Propidium Iodide (PI)

Mission Bio strongly recommends the use of fluorescent exclusion reagents such as Propidium Iodide (PI) to determine cell death/viability. PI-based assays compared to Trypan Blue-based assays may be more robust in accurately determining the percentage of dead/viable cells. Please follow manufacturer's instructions when using PI-based viability assays.

DNA + Protein Protocol

1 Prepare Cell Suspension

Genomic Protocol

1 Prepare Cell Suspension

This section describes the steps required to prepare a single-cell suspension, count cells, assess cell viability and cell suspension quality, and stain cells with oligo-tagged antibodies. The workflow is optimized for a starting cell concentration of between 6,000 and 10,000 cells/ μ L at greater than 90% viability in DPBS (w/o Ca²⁺/Mg²⁺) with a minimum volume of 100 μ L. Some cell loss is to be expected throughout the antibody staining and washing procedure and therefore a recommended ~6,000 – 10,000 cells/ μ L ensures a minimum cell concentration of 3,000 – 4,000 cells/ μ L in 35 μ L needed for encapsulation.

NOTE • Thaw reagents at room temperature unless directed to thaw them on ice.

- Store reagents according to manufacturer's storage recommendations as soon as they are received. Vortex and then centrifuge reagents as directed.
- The following procedure assumes cell lines or PBMCs to be cryopreserved in 2 mL cryovials in a total volume of 0.5 mL and stored in liquid nitrogen or -80°C.

Thaw Cells

- **1.1** Retrieve all reagents required for preparing the cell suspension:
 - Cell Buffer (Ambient Kit)
 - Human TruStain FcX (on ice)
 - Blocking Buffer () (4° C, Protein Staining Kit) (on ice)
 - Cell Staining Buffer (BioLegend, 420201) (at RT)
 - Reconstituted TotalSeq[™]-D Heme Oncology Cocktail (at RT)
 - Flowmi Cell Strainer
- **1.2** Warm thawing media (for instance 40% FBS + 60% base media) to 37° C.
- **1.3** Remove cryovial of cells from liquid nitrogen or the -80°C freezer, **immediately transfer** to a biosafety hood, twist the cap a quarter to relieve pressure, and immediately retighten.
- **1.4 Immediately transfer to a 37° C water bath**, quickly thaw the vial by gently swirling the tube until a small amount of ice remains (< 1 minute). Ensure to avoid submerging the tube completely.
- **1.5** Remove tube and clean with 70% ethanol.
- **1.6** Using aseptic techniques, add **1 mL of thawing media drop wise** to the cryovial. Transfer the entire contents of the vial to a 15 mL conical tube.
- **1.7** Using a wide bore P-1000, wash the vial with **1 mL of pre-warmed thawing media**.
- **1.8** Transfer wash from vial to the 15 mL tube, drop by drop, making sure to pipette against the wall. Gently shake tube while adding.

- **1.9** Add **2 mL of thawing media** to 15 mL, drop by drop, making sure to pipette against the wall, and gently shake the tube while adding.
- **1.10** Add **0.5** mL of thawing media to 15 mL tube every few seconds until **12** mL total volume is reached. Gently mix the tube by hand after each addition.
- **1.11** Centrifuge at **400 x g for 5 minutes** at room temperature.
- **1.12** Immediately aspirate supernatant, leaving 0.5 mL to 1 mL of washing media behind. **Do not disturb the cell pellet.**
- **1.13** Using a wide bore tip, gently **resuspend the cell pellet** in remaining thawing media by pipetting up and down ~5x.
- 1.14 Add 10 mL of thawing media.
- 1.15 Centrifuge at 400 x g for 5 minutes at room temperature.
- 1.16 Aspirate all supernatant.
- 1.17 Resuspend the cells in 1 mL of Cell Staining Buffer (BioLegend, 420201) (CSB).
- **1.18** Centrifuge at **400 x g for 5 minutes** at room temperature.
- **1.19** Aspirate supernatant.
- **1.20** Resuspend the cells in **250 \muL of CSB**.
- **1.21** Quantify the cells using an automated cell counter or hemocytometer following best practices and the manufacturer's instructions.
- **1.22** Dilute cell suspension to **25,000 cells/\muL using CSB** in a **minimum volume of 40 \muL**.
- **1.23** Store the cells on ice until used for staining the cells (Stain Cells) and proceed immediately to Step 1.24.

IMPORTANT Cells must not be stored longer than 30 minutes as a subset of cells (e.g., monocytes) are prone to stick to the tube plastic and may be unrecoverable.

Reconstitute Antibody-Oligo Conjugate (AOC) Panel

The TotalSeq[™]-D Heme Oncology Cocktail (BioLegend) is supplied lyophilized in single reaction vials. The panel needs to be reconstituted prior to staining the cells.

- 1.24 Retrieve a vial of the lyophilized TotalSeq[™]-D Heme Oncology Cocktail (BioLegend, 399906) from 4°C and equilibrate to room temperature for 5 minutes.
- **1.25** Centrifuge the tube at **10,000 x g for 30 seconds** at room temperature.
- **1.26 Resuspend** the lyophilized panel in **60 \muL of Cell Staining Buffer** (BioLegend, 420201). Close the tube with the original cap and vortex for 10 seconds.
- **1.27** Incubate at **room temperature for 5 minutes**.
- **1.28** Vortex the tube for **10 seconds** and centrifuge at **10,000 x g for 30 seconds** at room temperature.
- **1.29 Transfer the entire volume (60 μL)** of reconstituted panel to a **Protein low-bind** Eppendorf tube (Eppendorf, 22431081).
- 1.30 Centrifuge the tube at 14,000 x g for 15 minutes at 4° C. Once completed, the reconstituted TotalSeq[™]-D Heme Oncology Cocktail must be used immediately in Step 1.33.

Stain Cells

1.31 In a 15 mL **low-bind** conical Eppendorf tube add the following reagents:

Reagent	Volume (µL)
Human TruStain FcX	5.0
Blocking Buffer (●)	5.0
Cell Suspensions in CSB (25,000 cells/ μ L)	40.0
Total Volume	50.0

- **1.32** Gently mix with a 200 μ L wide bore tip and incubate the solution for 15 minutes on ice.
- **1.33** Aspirate 50 μL of the reconstituted TotalSeq[™]-D Heme Oncology Cocktail and add to the blocked cell suspension. Total volume is 100 μL.

IMPORTANT Avoid touching the bottom or sides of the tube containing the reconstituted TotalSeq[™]-D Heme Oncology Cocktail with pipette tip to avoid pelleted protein aggregates. Aggregates are not visible.

- **1.34** Gently mix with a 200 μ L wide bore tip.
- **1.35** Incubate for 30 minutes on ice.
- **1.36** Add 14 mL of pre-chilled CSB to the cell staining solution.
- **1.37** Centrifuge at **400 x g for 10 minutes at 4° C** in a swinging bucket.
- 1.38 Carefully aspirate and discard 13.5 mL of supernatant using a serological pipette.

IMPORTANT Aspirate from the top of the solution and avoid touching the bottom and sides of the tube. Leave at least 0.5 mL of supernatant behind. Do not disturb or resuspend the cell pellet. Cell pellet may not be visible.

- **1.39** Repeat steps **1.36** to **1.38** for two additional washes, centrifuging at **400 x g for 5 minutes** each at 4° C.
- **1.40** Remove and discard supernatant, leaving "100 μ L: Aspirate all but 1 mL of supernatant using a serological pipette, then switch to a P1000 pipette to remove the remaining supernatant ("100 μ L).
- **1.41** Add 900 μL of Cell Staining Buffer to the cell pellet and resuspend by gently pipetting up and down several times using a 1 mL wide bore tip.
- **1.42** Filter the cells with a 40 μm Flowmi cell strainer: Aspirate 1 mL of the cell suspension, insert the filter onto the same sample tube, and release the filtered suspension through the filter into the tube.
- **1.43** Transfer the cell suspension to a 1.5 mL DNA low-bind Eppendorf tube.

- **1.44** Centrifuge at **400 x g for 5 minutes at 4° C**.
- **1.45** Inspect the cell pellet and carefully remove all supernatant. **Do not disturb the cell pellet.** Use a P-200 or P-20 to remove all the supernatant.

IMPORTANT Failure to remove all Cell Staining Buffer from the cell pellet may reduce the stability of emulsions during cell encapsulation.

- **1.46** Resuspend the pellet in 60 μL of Cell Buffer (Mission Bio) by pipetting up and down several times.
- 1.47 Count the cells using an automated cell counter and dead-cell exclusion dye (e.g., Trypan Blue or Propidium iodide) according to the manufacturer's instructions. Assess both single cell suspension quality and cell viability.
- 1.48 Dilute cell suspension to 3,000 4,000 cells/μL using Cell Buffer.

IMPORTANT Mission Bio's Cell Buffer contains density gradient medium. Cells that are resuspended in Cell Buffer are difficult to pellet via centrifugation.

- IMPORTANT Use of cell concentrations outside the range of 3,000 4,000 cells/μL or viability 90% may adversely affect results. If the minimum concentration of 3,000 cells/μL cannot be met in a total volume of 50 μL, the total volume of Cell Suspension may be reduced to as low as 35 μL.
- **1.49** Place cell suspension on ice until required in Section 2 Encapsulate Cells. Do not keep cell suspensions on ice for longer than 30 minutes before proceeding to encapsulation.

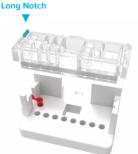
DNA + Protein Protocol

2 Encapsulate Cells

2 Encapsulate Cells

In this step, cells are encapsulated with Lysis Buffer and Protease to create a cell emulsion. For input cell concentrations of 3,000 - 4,000 cells/µL, approximately 5% of all emulsion droplets will contain a cell.

IMPORTANT

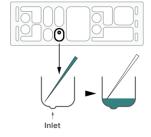

- Handle emulsions with caution, avoiding sources of static and pipetting slowly and carefully.
- Use only the consumables (sample tubes and pipette tips) validated by Mission Bio (see Tapestri Instrument and DNA Cartridge and list of Required Third Party Consumable Reagents).
- 2.1 Turn on the Tapestri Instrument at least 5 minutes prior to use.
- 2.2 Retrieve all reagents required for cell encapsulation:
 - Tapestri DNA Cartridge
 - Tapestri DNA Gasket
 - Lysis Buffer (●) (-20 °C Kit)
 - Reverse Primer Pool (•) (-20 °C Kit)
 - Encapsulation Oil (Ambient Kit)
 - Cell Suspension (prepared in Section 1 Prepare Cell Suspension)

Thaw Lysis Buffer and Reverse Primer Pool on ice.

2.3 In the Pre-PCR area, carefully open a new Tapestri DNA Cartridge.

IMPORTANT

- Avoid dust and debris at all times when handling the DNA cartridge.
- Each DNA cartridge is packaged with one DNA Gasket to be used throughout the run. Store both DNA cartridge and DNA Gasket in protective packaging when not in use during the experiment. Use within 24 hours after opening.
- 2.4 Mount the Base Plate onto the Tapestri Instrument. Pre-label and place a 0.2 mL Axygen MAXYmum Recovery PCR tube into the middle of the slot at the left of the Base Plate for collecting the encapsulation emulsion product. Position the tube with the open lid facing left. Avoid sources of static.
- 2.5 Place the DNA Cartridge onto the Base Plate with the long notch on the side of the cartridge oriented on the top left, as shown, and place in instrument.



IMPORTANT Minimize electrostatic sources. Only the Axygen MAXYmum Recovery PCR tubes have been validated by Mission Bio as nuclease-free and emulsion-safe. Do not substitute with other PCR tubes.

- In a new tube, prepare Lysis Mix by adding 7.3 μL of Reverse Primer Pool (●) into 92.7 μL of Lysis Buffer (●), vortex and briefly centrifuge.
- **2.7** Pipette 90 μL of Lysis Mix into reservoir 1.
- **2.8** Pipette 35 μL of **Cell Suspension** into **reservoir 2**.

Pipette slowly into the bottom of the reservoir where the inlet is located. Raise the pipette tip as the liquid level in the reservoir is rising, keeping the tip slightly submerged.

The total volume of **Cell Suspension** may be as low as 35μ L. Ensure that the inlet is fully covered with **Cell Suspension** before starting the Cell Encapsulation program.

2.9 Pipette 200 µL of Encapsulation Oil into reservoir 3.

IMPORTANT Make sure to apply the DNA Gasket and start the program within 1 minute after loading the Encapsulation Oil.

- 2.10 Apply the Tapestri DNA Gasket to the top of the cartridge. Ensure that it is oriented correctly.
- **2.11** Firmly **close the instrument lid**, until the lid handle is level and flush with the top of the lid and instrument.

2.12 Run the Encapsulation program by pressing Step 1:
 Encapsulation on the Tapestri Instrument touchscreen. Press
 NEXT and confirm to start the run. The program runs for about 5 minutes.

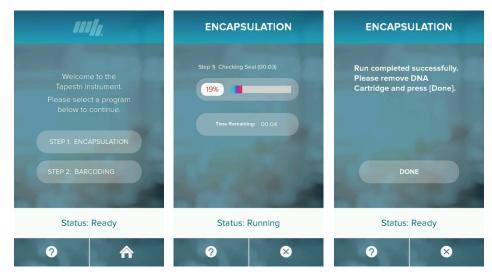


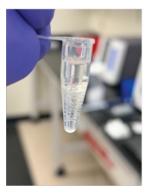
Figure 6. Touchscreen displays show main menu (left), screen after selecting 'Step 1:

Encapsulation' program (middle), and final screen after Encapsulation is completed (right).

- 2.13 When the touchscreen displays **DONE**, carefully open the lid and **remove the cartridge from the Base Plate**. **Remove the gasket from the lid and set aside.**
- 2.14 Carefully transfer the emulsion sample tube to a 96-well plate holder and assess emulsion quality. Encapsulated cells appear as a white layer.

- 2.15 Return the cartridge back onto the Base Plate seated inside the instrument and close the lid to protect it from environmental debris.
- **2.16** The sample tube contains $50 80 \mu$ L of cell emulsion (top layer) and $80 120 \mu$ L encapsulation oil (bottom layer) for a total volume of $130 200 \mu$ L.
- 2.17 Use a *gel loading tip* to carefully **remove up to 100 μL of oil** from the bottom layer of the sample. Aspirate oil very slowly, as to avoid emulsion sticking to walls of tube and inspect emulsion for uniformity.

IMPORTANT Hold the tube by the lid. Remove oil only. Make sure the gel loading tip is at the very bottom of the sample tube and wait ~5 seconds before removing oil. This will minimize removal of cell emulsion.


After removal, ~70 μ L of cell emulsion and ~5 μ L of oil remain at the bottom of the tube. Make sure the entire tube volume does not exceed the maximum volume specified in the thermal cycler manufacturer's instructions (typically 100 μ L).

High-quality emulsions

Low-quality emulsions

No

emulsions

If low-quality or no emulsions are detectable, please contact support@missionbio.com.

DNA + Protein Protocol

3 Lyse and Digest Cells

Page | 25

3 Lyse and Digest Cells

In this step, cells are lysed, and DNA binding proteins are enzymatically digested to make DNA accessible for downstream target amplification.

3.1 Run the "Lysis/Digest" protocol on the thermal cycler according to the manufacturer's instructions, using the following parameters:

Step	Temperature	Time
1	50 °C	60 min
2	80 °C	10 min
3	4 °C	HOLD

Table 2. Thermal cycling protocol for 'Lysis/Digest'.

3.2 When the run completes, store the lysed and digested samples at 4 °C until required in Section 4 – Barcode Cells. The volume of oil at the bottom of the tube is expected to increase slightly after thermal cycling.

NOTE We strongly recommend proceeding through Section 4 – Barcode Cells on day 1.

DNA + Protein Protocol

4 Barcode Cells

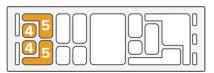
4 Barcode Cells

In this step, the drops containing encapsulated cell lysate are combined with drops containing both Barcoding Master Mix and Barcoding Beads. These newly generated drops are then distributed into 8 PCR collection tubes, to create 8 cell-barcoding emulsion samples.

- **4.1** Retrieve all reagents required for Cell Barcoding:
 - Barcoding Mix V2 (-20 °C Kit)
 - Barcoding Beads (●) (4 °C Barcoding Bead Kit) → thaw at RT, protected from light
 - Forward Primer Pool () (-20 °C Primer Pools Kit)
 - Barcoding Oil (Ambient Kit)
 - Electrode Solution (Ambient Kit)
 - AbTag Primer (30 μM)

Thaw all -20 °C reagents on ice, except for the Barcoding Beads.

IMPORTANT Protect Barcoding Beads from light and thaw at room temperature.


Prime the DNA Cartridge for Barcoding

IMPORTANT

Use emulsion-safe PCR tubes (Axygen MAXYmum Recovery).

- 4.2 Label eight 0.2 mL emulsion-safe PCR tubes with the sample number and load them into the eight bottom slots of the Tapestri Base Plate with the open lids toward you.
- **4.3** Retrieve Tapestri DNA Cartridge from its packaging and mount onto Base Plate (used during Cell Encapsulation).
- 4.4 Pipette 200 μL of Electrode Solution into each of the two reservoir 4 of the cartridge.
- 4.5 Pipette 500 μL of Electrode Solution into each of the two reservoir 5 of the cartridge.
- **4.6 Apply the DNA Gasket** and firmly close the instrument lid, until the lid handle is level and flush with the top of the lid and instrument.

4.7 Run the Priming program by pressing Step 2: Barcoding on the Tapestri Instrument touchscreen. Press NEXT and confirm to start the program. The program runs for about 20 minutes before automatically pausing to allow for loading of the remaining reagents.

<i></i>	PRIMING	PRIMING		
Welcome to the Tapestri Instrument. Please select a program below to continue. STEP 1: ENCAPSULATION	Step 3) Priming (00:02)	DNA Cartridge successfully primed. To continue with barcoding, press [Done].		
STEP 2: BARCODING	1000	DONE		
Status: Ready	Status: Running	Status: Ready		
ଡ ♠	0 S	Ø 8		

Figure 7. Touchscreen displays show main menu (left), screen after selecting 'Step 2: Barcoding'. program (middle), and final screen after Priming is completed (right).

Prepare Barcoding Master Mix

- **4.8** Ensure reagents are completely thawed. Vortex and centrifuge prior to mixing.
- **4.9** Prepare 300 μL Barcoding Master Mix Solution as shown in the following table. A total of 250 μL will be used for Barcoding.

Reagent	Volume (µL)
Barcoding Mix V2	293.0
Forward Primer Pool (5.0
Antibody Tag Primer (●)	2.0
Total	300.0

 Table 3.
 Reagents for Barcoding Master Mix

4.10 Briefly vortex the Barcoding Master Mix and centrifuge to collect the contents and store on ice.

IMPORTANT After the Priming program has completed the Barcoding program must be started within 30 minutes.

Load the DNA Cartridge

- **4.11** When the touchscreen displays DONE, **retrieve the emulsion containing the encapsulated cell lysate** from the thermal cycler at 4 °C (see **Section 2 Encapsulate Cells**).
- **4.12** Open the instrument lid and **pipette all of the contents of the encapsulated emulsion** ($^{\circ}80 \ \mu$ L) including 5 10 μ L Encapsulation Oil at the bottom of the tube into **reservoir 6**.

IMPORTANT Remember to avoid sources of static and pipette slowly and carefully when handling emulsions.

- 4.13 Retrieve the Barcoding Beads () and vortex tube for1 minute at high speed.
- 4.14 Carefully pipette 200 μL of Barcoding Beads () into reservoir 7. Pipette slowly and do not introduce bubbles.
- **4.15** Pipette **250 μL of Barcoding Master Mix** into reservoir **8**.
- **4.16** Pipette **1.25 mL of Barcoding Oil** into the **reservoir 9**. Be careful not to spill oil into surrounding reservoirs while loading the cartridge.

IMPORTANT Make sure to apply the DNA Gasket and start the Cell Barcoding program within 1 minute of loading the oil.

- **4.17 Apply the DNA Gasket** and firmly close the instrument lid, until the lid handle is level and flush with the top of the lid and instrument.
- 4.18 Run the Barcoding program by pressing NEXT on the Tapestri Instrument touchscreen in the following figure. This program will complete in 35 minutes. In Tapestri instruments with serial numbers MBT-2020 or higher the Barcoding program will complete in 45 minutes (35 minutes barcoding + 10 minutes UV treatment). See Section 5 – UV Treatment and Targeted PCR Amplification for additional information.

BARCODING	BARCODING	BARCODING
Please ensure that: 1. 8 collection tubes are mounted. 2. DNA Cartridge is mounted. 3. Gasket is correctly installed. 4. Instrument lid is fully closed. PREVIOUS	Step 3) Barcoding (00:02) 70% Time Remaining: 00:01	Run completed successfully. Please remove DNA Cartridge and press [Done].
Status: Ready	Status: Running	DONE Status: Ready
? ⊗	? ×	0 8

Figure 8. Touchscreen displays before the second part of Barcoding (left), the status during Barcoding (middle), and final screen after Barcoding is completed (right).

- **4.19** When the screen displays Run completed successfully, press DONE, carefully open the lid and **remove the Base Plate together with the cartridge to collect the eight tubes** containing the barcoded emulsion. Place the cartridge on the bench.
- **4.20** Remove the cartridge from the Base Plate.

NOTE The volumes of oil and emulsion may vary across all 8 tubes. If more than 100 μL of Barcoding Beads or more than 15 μL of emulsions remain in reservoirs proceed with the workflow and contact support@missionbio.com.

4.21 Visually evaluate the emulsion quality. The barcoded DNA **emulsions are visible as a white solid layer** on top of the oil layer (~20 μL).

Using a gel loading pipette tip carefully remove up to 90 μL of
 Barcoding Oil from the bottom of each tube. The volume of the oil should be ~10-15 μL per tube and the total volume in each tube must be no more than 100 μL. Place sample tubes back onto the Base Plate.

IMPORTANT Hold tubes by the lid. Insert pipette tip only once when removing oil. Aspirate very slowly.

Clean Electrode Pins

NOTE The electrode pins on the bottom of the instrument lid are in direct contact with the Electrode Solution during Priming and Cell Barcoding. Gradual buildup of salt deposits might eventually hinder instrument function. Electrodes are disabled when the instrument lid is open.

- **4.23** With a dust-free cloth and deionized water **clean all four electrode pins** on the bottom of the instrument lid.
- 4.24 Dry the electrode pins using a dry dust-free cloth.

Dirty (salt deposits)

Clean

DNA + Protein Protocol

5 UV Treatment and

Targeted PCR Amplification

5 UV Treatment and Targeted PCR Amplification

In this step, emulsions containing cell lysate, barcoding beads, and PCR reagents are exposed to UV light to cleave off barcode-containing forward primers from the barcoding beads prior to targeted PCR amplification.

IMPORTANT

Tapestri Instruments with serial numbers MBT-2020 (located on back panel of instrument) are equipped with a UV light source, which is automatically turned on in the last 10 minutes of the Barcoding program. Therefore, skip the instructions provided in this section (Steps 5.1 – 5.2) and proceed to Step 5.3.

5.1 Place the entire Base Plate with tubes containing barcoded DNA on ice.

5.2 Place a UV light on top of the ice bucket and **expose the samples to UV light for 8 minutes.** The distance between sample and UV light must not exceed 5 inches.

IMPORTANT Make sure to use the Analytik Jena Blak-Ray XX-15L UV light source.

5.3 After UV exposure, remove the Base Plate from the ice, **transfer the samples to the thermal cycler, and run the "Targeted PCR" protocol** according to the manufacturer's instructions.

Make sure to select the correct thermal cycling program with the **correct annealing/extension times (Steps 4 and 8, see Table 4 below)** that are compatible with the targeted gene panel you processed your samples with.

IMPORTANT

Ensure that the emulsions in all eight tubes (white top layer) sit within the height of the block of the thermal cycler that is temperature controlled. Use a skirt or empty **PCR** tubes placed at the corners of the thermal cycling block to maximize even heat transfer.

			2. Targeted PCR				
Amplicon Number			20 – 100	100 – 200	200 – 300	> 300	
Panel		Custom*	AML V2	THP/CLL	Myeloid		
Step	Ramp	Temperature	Time	Time	Time	Time	Cycle
1	4 °C/s	98 °C	6 min	6 min	6 min	6 min	
2		95 ℃	30 sec	30 sec	30 sec	30 sec	
3	− 1°C/s	72 °C	10 sec	10 sec	10 sec	10 sec	11
4		61 °C	3 min	4.5 min	6 min	9 min	
5		72 °C	20 sec	20 sec	20 sec	20 sec	
6		95 ℃	30 sec	30 sec	30 sec	30 sec	
7	1°C/s	72 °C	10 sec	10 sec	10 sec	10 sec	13
8	1 0/5	48 °C	3 min	4.5 min	6 min	9 min	CI
9		72 °C	20 sec	20 sec	20 sec	20 sec	
10	4 °C/s	72 °C	2 min	2 min	2 min	2 min	
11	4 0/5	4 °C	HOLD	HOLD	HOLD	HOLD	

 Table 4. Thermal cycling programs for Targeted PCR.

*Please contact *support@missionbio.com* for additional information.

IMPORTANT

Ensure that ramp rate is set to 1 °C/s for emulsion stability. If you observe an aqueous layer on top of the white-appearing emulsion layer, please contact support@missionbio.com.

Emulsions not intact Targeted PCR unsuccessful

Emulsions intact Targeted PCR successful

Break Emulsions and Pool Tubes

- **5.4** Retrieve the following reagents needed for PCR product purification:
 - Extraction Agent (●)
 - Nuclease-free water
- **5.5** Add **10 μL of Extraction Agent (●) to each sample tube**. Vortex and spin for 20 seconds.
- **5.6 Incubate at room temperature for 3 minutes** until the entire emulsion changes from white to clear in color. If emulsions don't lose their white appearance, add 5 μL of additional Extraction Agent, vortex and spin for 20 more seconds.
- **5.7** Add **45 μL of nuclease-free water to each tube**. Mix by briefly vortexing and then spinning for 10 seconds in a benchtop centrifuge to separate the aqueous and oil layers.
- 5.8 Pipette 42 μL of each of the aqueous top layers from tubes 1 4 into a first 1.5 mL low-bind Eppendorf tube (this Eppendorf tube should now contain 168 μL). Pipette 42 μL of the aqueous top layer from each of tubes 5 8 into a second 1.5 mL low-bind Eppendorf tube. Do not transfer any oil (bottom phase) or Barcoding Beads (interphase).
- 5.9 Store samples at 4 °C or proceed to Section 6 Cleanup PCR Products.

STOPPING POINT

This is a good place to stop in the protocol if there is not adequate time to continue to clean up the libraries in one day (~ 1 hr). The amplified PCR products can be stored at 4 °C for < 24 hours or -20 °C for > 24 hours.

DNA + Protein Protocol

6 Cleanup PCR Products

6 Cleanup PCR Products

Digest PCR Product

- 6.1 Retrieve all reagents required for digesting the PCR product:
 - DNA Clean up Buffer (
) (-20 °C Kit)
 - Clean up Enzyme (●) (-20 °C Kit)
- 6.2 For each of the two pooled samples prepare a 200 μL Digestion Mix by adding 20 μL DNA Clean up Buffer () and 12 μL Clean up Enzyme ().

Reagent	Volume (µL)
Pooled sample	168.0
DNA Clean up Buffer ()	20.0
Clean up Enzyme (●)	12.0
Total	200.0

Table 5. Reagents for Digestion Mix.

- **6.3** Briefly vortex and quick-spin the tubes.
- **6.4** Split each sample into two new tubes, each containing 100 μL (a total of 4 tubes), and place on thermocycler to digest at 37 °C for 60 minutes.
- 6.5 Remove from thermal cycler, store at room temperature and continue with AMPure XP Library Cleanup.

AMPure XP Library Cleanup

- 6.6 Thoroughly vortex AMPure XP reagent for 45 seconds at high-speed. Equilibrate the AMPure XP reagent to room temperature.
- 6.7 Prepare 5 mL fresh 80% ethanol using nuclease-free water.
- **NOTE** Measure volumes for 100% ethanol and nuclease-free water separately. Make sure to tightly close all ethanol containers when not in use, since ethanol can absorb water over time, leading to lower concentrations.
 - 6.8 **Recombine contents** of sample tubes into **two** new 1.5 mL low-bind Eppendorf tubes.
- 6.9 Thoroughly vortex AMPure XP reagent at high speed immediately prior to usage.
- 6.10 For each 200 μL sample tube, add 140 μL (0.7 X) of AMPure XP reagent.
- 6.11 Vortex for 10 seconds and quick-spin to collect contents.

- 6.12 Incubate the tubes at **room temperature for 5 minutes**, and then place the tubes on the magnet.
- 6.13 Allow at least **5 minutes** for the AMPure beads to separate from solution.

IMPORTANT Do not discard the supernatant from the tubes as it contains the Protein Library.

- 6.14 Without removing the tubes from the magnet, transfer the supernatant ("340 μL) from each tube to two new 1.5 mL low-bind Eppendorf tubes and set aside at room temperature for Protein Library Cleanup I in Step 6.34. The DNA library is bound to the beads.
- 6.15 Proceed with DNA Library Cleanup I followed by Protein Library Cleanup I.

DNA Library Cleanup I

- 6.16 In each tube, wash AMPure bead pellets while keeping the tubes on the magnet:
 - a. Carefully add 800 μL of the freshly prepared 80% ethanol.
 - b. Wait **30 seconds**.
 - c. Remove ethanol without disturbing the AMPure beads.
 - d. Repeat Steps a. c. once, for a total of two wash cycles.
- **6.17** Keeping the tubes on the magnet, using a P-10 pipette, **remove all residual ethanol** from each tube without disturbing the AMPure beads.
- 6.18 Dry AMPure bead pellets in the tubes on the magnet by incubating at room temperature for 4 6 minutes. Over-dried beads may be more difficult to suspend.
- 6.19 Remove the tubes from the magnet.
- 6.20 Add 60 μL of nuclease-free water into each tube.
- **6.21** Vortex each tube for 10 seconds, quick-spin to collect the contents, and incubate the tubes at room temperature for 2 minutes.
- 6.22 Place the tubes onto the magnet and wait for at least 2 minutes or until solutions are clear.
- **6.23** Transfer and combine 50 μ L of purified PCR product from each tube to a single new 0.2 mL PCR tube each for a total of 100 μ L. Avoid transfer of AMPure beads.
- 6.24 [OPTIONAL] If AMPure beads persist in the supernatant, place the 0.2 mL PCR tubes onto a 96-well magnet stand, wait 5 minutes and transfer 50 μL of purified PCR products to a new 0.2 mL PCR tubes.
- **6.25 Quantify 1 μL of purified PCR product**, using the **High Sensitivity dsDNA 1X Qubit Kit** (or equivalent assay) according to the manufacturer's instructions.

NOTE The DNA may vary between 0.2 ng/µL to 4.0 ng/µL. If yields are outside this range, contact support@missionbio.com for additional support.

6.26 Store purified PCR product samples at 4° C until proceeding to the next step or -20° C for long-term storage.

Protein Library Cleanup I

Prepare Streptavidin Beads

- 6.27 Retrieve all reagents required for cleaning up the protein library:
 - Streptavidin Beads (
) (4°C, Protein Staining Kit)
 - 2X Wash Buffer (4°C, Protein Staining Kit)
 - Biotin Oligo () (4°C, Protein Staining Kit)
- 6.28 Equilibrate the Streptavidin Beads (
) to room temperature.
- 6.29 Thoroughly vortex Streptavidin Beads (
) at high speed immediately prior to usage.
- 6.30 Transfer 100 μL of Streptavidin Beads (●) to a new 1.5 mL low-bind Eppendorf tube.
- 6.31 Place on magnet and wait for 2 minutes for beads to separate from solution.
- 6.32 Remove the supernatant and discard.
- 6.33 Wash the beads while keeping the tube on the magnet:
 - a. Carefully add 1 mL of 2X Wash Buffer.
 - b. Wait **1 minute** for solution to clear.
 - c. Remove 2X Wash Buffer without disturbing the beads.
 - a. Repeat Steps a. c. once, for a total of two wash cycles.
- 6.34 Resuspend the beads 690 μL of 2X Wash Buffer and set aside until later usage in Step 6.39.

Isolate Antibody Tags

- 6.35 Retrieve the two tubes with the supernatant from Step 6.14 of the Clean Up PCR Product section.
- 6.36 To each tube add **2 μL of Biotin Oligo () to the supernatant**, vortex and spin down.
- 6.37 Incubate at 96 °C for 5 minutes.
- **6.38** Transfer tubes immediately onto ice and incubate for 5 minutes.
- 6.39 Add and mix 342 μl of Streptavidin Beads resuspended in 2X Wash Buffer from Step 6.34
 above to each Biotin Oligo-treated sample tube.
- 6.40 Incubate for **20 minutes** on a shaker at room temperature.
- 6.41 Quick-spin to collect contents.
- 6.42 Place on magnet and wait **5 minutes** for the beads to separate from solution.
- 6.43 While waiting, prepare **3 mL of 1X Wash Buffer** by mixing 1.5 mL of 2X Wash Buffer with 1.5 mL of nuclease-free water.
- 6.44 Remove the supernatant, wash the Streptavidin Beads while keeping the tube on the magnet:
 - a. Carefully add 1 mL of 1X Wash Buffer.
 - b. Wait **1 minute** for solution to clear.
 - c. Remove 1X Wash Buffer without disturbing the beads.
- 6.45 Remove the tube from magnet and wash a second time with **1 mL nuclease-free water** by pipetting up and down five times.
- 6.46 Place on magnet and wait **3 minutes** for the beads to separate from solution.
- 6.47 Remove the supernatant and in each tube resuspend the beads in 25 μL of nuclease-free water. Transfer and combine into a new 0.2 mL PCR tube for a total of 50 μL. The Protein PCR products are bound to the streptavidin beads (brown).

STOPPING POINT

This is a good place to stop in the protocol if there is not adequate time to continue to Library PCR ($^{\sim}$ 1 hr).

The purified DNA PCR products can be stored at 4 °C for < 24 hours or -20 °C long-term and will be stable for up to six months. The amplified Protein PCR products can be stored at 4 °C overnight. Do not store at -20 °C.

DNA + Protein Protocol

7 PCR Target Library

7 PCR Target Library

During Target Library PCR the P5 and P7 adapter (Illumina) sequences are added to the amplicons required for sequencing. Each V2 Index Primer includes two unique index sequences.

Use the following V2 Index Primer combination when indexing your DNA libraries.

# of Samples	Option 1	Option 2	Option 3	Option 4
1		Any index		
2	1+4	2 + 3	5 + 7	6 + 8
3	1+2+3	4+6+8		
4	1+2+3+4	5+6+7+8		
5	1+2+3+4	5+6+7+8		
	+ one from (6, 7, 8)	+ one from (1, 3, 4)		
6	1+2+3+4	5 + 6 + 7 + 8		
	+ two from (6, 7, 8)	+ two from (1, 3, 4)		
7	1+2+3+4+6+7+8			
8	1+2+3+4+5+6+7+8			
> 8	Contact Mission Bio			

Table 6. V2 Index Primer combinations for different sample multiplexing schemes.

- 7.1 Retrieve the following reagents required for Library PCR
 - Purified PCR products (DNA and Protein) (from Section 6)
 - V2 Index Primer 1 8 (•) (-20 °C Kit) DNA Library
 - Protein Library Indices 1-8 (-) (+4 °C Kit) Protein Library
 - Library Mix V2 (-20 °C Kit)
 - Nuclease-free water (Ambient Kit)
- 7.2 In a Pre-PCR area label two new 0.2 mL PCR tubes with the index numbers of the V2 Index Primer.
- 7.3 Set up two different Library PCR reactions: one for the DNA Library and one for the Protein Library as follows:

IMPORTANT Ensure V2 index primers (•) are used for DNA and Protein index primers (•) are used for protein. Record the index number used for each sample. Make sure to avoid cross-contamination when handling the Indices.

	DNA Library	Protein Library		
Reagent	Volume [µL]			
Library Mix V2	25	25		
V2 Index Primer (●)	10	-		
Protein Index Primer (-)	-	10		
Targeted DNA PCR product	15	-		
Resuspended Streptavidin Beads containing Antibody Tags		15		
Total Volume	50	50		

 Table 7.
 Library Mix

- **7.4 Vortex and quick-spin** the tubes to collect contents.
- **7.5** Transfer the samples to the thermal cycler, then **run the Library PCR protocol** according to the manufacturer's instructions, using the following parameters:

Step	Temperature	Time	Cycles
1	95 ℃	3 min	
2	98 °C	20 sec	
3	62 °C	20 sec	10 for DNA Library20 for Protein Library
4	72 °C	45 sec	
5	72 °C	2 min	
6	4 °C	HOLD	

Table 8. Thermal cycling program for Library PCR.

7.6 Remove the samples from thermal cycler and store at room temperature.

Library cleanup

- 7.7 Thoroughly vortex AMPure XP reagent for 15 seconds at high-speed. Equilibrate the AMPure XP reagent to room temperature.
- 7.8 Prepare 5 mL fresh 80% ethanol using nuclease-free water.

NOTE Measure volumes for 100% ethanol and nuclease-free water separately. Make sure to tightly close all ethanol containers when not in use, since ethanol can absorb water over time, leading to lower concentrations.

DNA Library Cleanup II

- 7.9 Thoroughly vortex AMPure XP reagent at high-speed immediately prior to usage.
- 7.10 Add **50 μL** of nuclease-free water to the sample tube.
- 7.11 Add 69 μ L (0.69 X) of AMPure XP reagent to the 100 μ L sample.
- 7.12 Vortex for 5 seconds and quick-spin to collect contents.
- 7.13 Incubate the tube at **room temperature for 5 minutes**, and then place the tube on the magnet.
- 7.14 Allow at least 2 minutes for the AMPure beads to separate from solution.
- **7.15** Without removing the tube from the magnet, **remove the clear liquid** and discard. *The DNA is bound to the beads.*
- **7.16 Wash AMPure bead pellets** while keeping the tube on the magnet:
 - a. Carefully add 200 µL of the freshly prepared 80% ethanol.
 - b. Wait 30 seconds.
 - c. Remove ethanol without disturbing the AMPure beads.
 - d. Repeat Steps 7.16 a. c. once, for a total of two wash cycles.
- 7.17 Keeping the tube on the magnet, **remove all residual ethanol** without disturbing the AMPure beads.
- **7.18 Dry AMPure bead pellets** in the tube on the magnet by incubating at room temperature for at least **2 minutes**. *Over-dried beads may be more difficult to suspend.*
- 7.19 Remove the tube from the magnet.
- **7.20** Add 100 μ L of nuclease-free water into the tube.
- **7.21** Vortex tube for 5 seconds, quick-spin to collect the contents, and incubate at room temperature for 2 minutes.
- 7.22 Place the tube onto the magnet and wait for at least 2 minutes or until solutions are clear.
- **7.23** Transfer 100 μL of purified PCR product from the tube to a new 0.2 mL PCR tube. Avoid transfer of AMPure beads.
- **7.24** Add **72** μL (0.72 X) of AMPure XP reagent to the 100 μL sample.
- 7.25 Vortex for 5 seconds and quick-spin to collect contents.
- 7.26 Incubate the tube at room temperature for 5 minutes, and then place the tube on the magnet.
- 7.27 Allow at least 2 minutes for the AMPure beads to separate from solution.
- **7.28** Without removing the tube from the magnet, **remove the clear liquid** and discard. *The DNA is bound to the beads.*
- 7.29 Wash AMPure bead pellets while keeping the tube on the magnet:
 - a. Carefully add 200 μL of the freshly prepared 80% ethanol.
 - b. Wait **30 seconds**.
 - c. Remove ethanol without disturbing the AMPure beads.
 - d. Repeat Steps 7.29 a. d. once, for a total of two wash cycles.
- **7.30** Keeping the tube on the magnet, **remove all residual ethanol** without disturbing the AMPure beads.
- **7.31** Dry AMPure bead pellets in the tube on the magnet by incubating at room temperature for at least **2 minutes**. Over-dried beads may be more difficult to suspend.
- 7.32 Remove the tube from the magnet.

- **7.33** Add 15 μ L of nuclease-free water into the tube.
- **7.34** Vortex tube for **5** seconds, quick-spin to collect the contents, and incubate at room temperature for **2 minutes**.
- 7.35 Place the tube onto the magnet and wait for at least 2 minutes or until solutions are clear.
- **7.36 Transfer 12 μL** of purified PCR product from the tube to a new 0.2 mL PCR tube. *Avoid transfer of AMPure beads.*
- 7.37 Store purified PCR product samples at -20 °C until proceeding to the next step.

Protein Library Cleanup II

- **7.38** Place tube on magnet and wait for **2 minutes** for Streptavidin Beads to separate from the solution.
- **7.39** Without removing the tube from the magnet, transfer **50 μL of supernatant** in to a new 0.2 mL PCR tube.
- 7.40 Add 45 μ L (0.9 X) of AMPure XP reagent to the 50 μ L sample.
- **7.41 Vortex for 10 seconds** and quick-spin to collect contents.
- 7.42 Incubate the tube at room temperature for 5 minutes, and then place the tube on the magnet.
- 7.43 Allow at least 2 minutes for the AMPure beads to separate from solution.
- 7.44 Without removing the tube from the magnet, **remove the supernatant** and discard.
- **7.45 Wash AMPure bead pellets** while keeping the tube on the magnet:
 - a. Carefully add 200 µL of the freshly prepared 80% ethanol.
 - b. Wait 30 seconds.
 - c. Remove ethanol without disturbing the AMPure beads.
 - d. Repeat Steps 7.45 a. d. once, for a total of two wash cycles.
- **7.46** Keeping the tube on the magnet, **remove all residual ethanol** with a P-10 pipette without disturbing the AMPure beads.
- **7.47** Dry AMPure bead pellets in the tube on the magnet by incubating at room temperature for at least 2 minutes. Over-dried beads may be more difficult to suspend.
- 7.48 Remove the tube from the magnet.
- 7.49 Add 17 μL of nuclease-free water into the tube.
- **7.50** Vortex tube for 5 seconds, quick-spin to collect the contents, and incubate at room temperature for 2 minutes.
- 7.51 Place the tube onto the magnet and **wait for at least 2 minutes** or until solutions are clear.
- **7.52** Transfer 15 μ L of purified PCR product from the tube to a new 0.2 mL PCR tube.

Avoid transfer of AMPure beads.

STOPPING POINT

This is a good place to stop in the protocol if there is not adequate time to finish in one day (~ 1 hr). The purified Library PCR products can be stored at -20 °C.

DNA + Protein Protocol

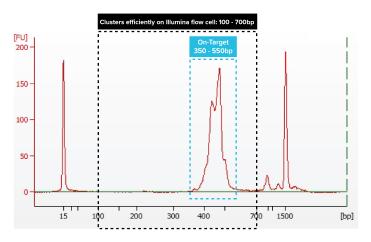
8 Quantify and Normalize Sequencing Library

8 Quantify and Normalize Sequencing Library

- 8.1 Retrieve the following for library quantitation:
 - Purified sample libraries (DNA library and protein library)
 - Agilent DNA High Sensitivity Kit or Agilent DNA 1000 kit

Quantify Using Agilent Bioanalyzer

Protein Library with a peak at ~250bp.

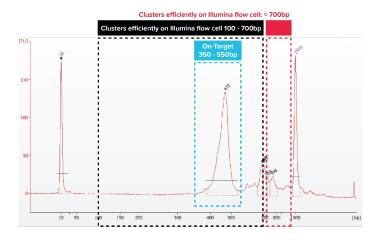

NOTE Agilent TapeStation 2200/4200 or Fragment Analyzer (Advanced Analytical) may be used if an Agilent Bioanalyzer 2100 is not available.

- 8.2 Use **1** μL of a **1:10** dilution of the DNA and Protein Library and follow Agilent's protocol instructions to prime, load, and run DNA samples from all tubes on a DNA 1000 chip.
- **8.3** Verify the DNA and Protein Library product sizes and purity and quantify following manufacturer's instructions.

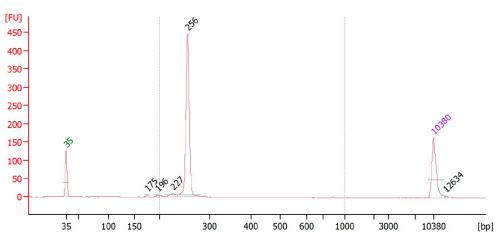
NOTE A final concentration of on-target product between 2 – 50 ng/μL can be expected for the DNA Library with a peak at ~460bp. A final concentration of on-target product between 1 – 30 ng/μL can be expected for the

AML Libraries

Libraries generated with the AML panel in general produce high-quality on-target amplicons (blue rectangle) with only a few off-target fragments (e.g., primer dimers).


8.4 Quantify the concentration of the libraries based on a range of 100 – 700bp (black rectangle) to include products that may efficiently cluster on the Illumina flow cell. This minimizes the potential to over-cluster when sequencing the libraries.

Use this value in **Step 8.7**.


Myeloid, Tumor Hot Spot, and CLL Libraries

Libraries generated with 250+ amplicon panels (e.g., Myeloid, Tumor Hot Spot, CLL) may produce large-size off-target fragments that need to be taken into account when quantifying the concentration of the libraries.

- 8.5 Quantify the concentration of the libraries based on a range of 100 700 bp (black rectangle) to include products that may efficiently cluster on the Illumina flow cell.
 Use this value in Step 8.7.
- 8.6 Quantify the concentration of the libraries based on a range of 700 1,200 bp (red rectangle) to record the fraction of products that will impact the final concentration of the pooled library when quantifying with a Qubit Fluorometer.

Protein Libraries

NOTE If primer dimers ("220 bp) are detectable (> 5% for DNA Library, > 10% for Protein library, based on molarity) it is recommended to clean the libraries again using the protocols outlined in the Appendix – Removing Excess Amounts of Primer Dimers. If > 25% of primer dimers are detectable, contact <u>support@missionbio.com</u> for additional support.

Normalize and Pool Libraries

- **8.7** For the DNA libraries use the *Tapestri Sample Quantification Tool (PN 40678)* to dilute each sample DNA library.
- **8.8 Pool 5 nM of each of the libraries equimolar.** The final concentration of DNA in the pooled library will be \sim 5 nM (0.9 1.3 ng/µL).
- 8.9 **Re-quantify the pooled library** with a Qubit Fluorometer.

AML Libraries

The final concentration of the library will be between $0.9 - 1.3 \text{ ng/}\mu\text{L}$.

Myeloid, Tumor Hot Spot, and CLL Libraries

The final concentration of the library will be between $0.9 - 1.6 \text{ ng/}\mu\text{L}$. The products quantified between 700 – 1,200 bp account for the increased concentration > 1.3 ng/ μ L. Ensure that the relative fraction of large-size off-target products as measured in Steps 8.5 – 8.6 is consistent with the Qubit measurement.

Protein Libraries

The final concentration of the library will be between $0.8 - 0.9 \text{ ng/}\mu\text{L}$.

NOTE Alternatively pooled libraries may be quantified using quantitative PCR (KAPA Library Quantification Kit Illumina Platforms, PN KK4873).

DNA + Protein Protocol

9 Sequence Library

9 Sequence Library

Parameter	Specification
Final library size	DNA Library: 350 bp – 550 bp with peak at ~460 bp Protein Library: 225 bp – 270 bp with peak at ~250 bp
Supported sequencers	MiSeq, HiSeq 2500, NextSeq 1000/2000, NextSeq 550, HiSeq 3000/4000, NovaSeq 5000/6000
Supported sequencing chemistries	See Table 9 on next page.
Index 1 (i7)	Yes (8nt). Index 1 – 8 sequences are different from Illumina's Indices. Illumina Indices may be used (4 μ M).
Index 2 (i5)	Yes (8nt). Index 1 – 8 sequences are different from Illumina's Indices. Illumina Indices may be used (4 μ M).
Number of unique i7/i5 index pair per sample	1
Custom sequencing primer?	Νο
Sequencing chemistry	2 x 150 bp (in some cases 500 cycle kits may be used with 300 cycle runs programmed)
PhiX %	5 % – 20 % see Table 9 on next page
Compatible with non- Tapestri libraries?	Yes, if libraries are of similar size.
Number of expected FASTQ files per sample	2: one Read 1/Read 2 pair representing one unique i7/i5 combination If the library is distributed across more than one flow cell lane, please merge lane-specific FASTQ files that belong to one sample.
Recommended coverage per sample	AML (~67M read pairs), Myeloid (~173M read pairs) CLL (~144M read pairs), THP (~128M read pairs)

Please refer to the Illumina User Guides listed in Table 10.

The following table provides guidance on how many samples maximally may be multiplexed and sequenced together on one flow cell. Please note that the recommended number of samples refers to the **DNA libraries only**.

For **Protein libraries** please refer to the next page to obtain additional information on sequencing requirements.

						Samples Sequenc	•	•			
						Panel	(# of an	plicons)		
Sequencer	Final Library Input [pM]	PhiX %	Cluster Density [K/mm2]	# of Lanes	AML 127	MYE 312	THP 244	CLL 274	Custom variable	Sequencing Chemistry	# of Read Pairs*** [10 ⁶]
MiSeq V3*	20 – 22	5%	1,200 – 1,500	1	0	0	0	0	Varies	V3 Paired End	25 – 30
HiSeq 2500**	8 – 10	10 %	750 – 900	2	4	2	2	2	Varies	V2 SBS Rapid Mode	300 – 350
NextSeq 500/550 Mid-Output	1.8 – 2	20 %	150 – 175	4	2	1^	1^	1^	Varies	V2.5 Paired End	120 – 140
NextSeq 500/550 High-Output	1.8 – 2	20 %	150 – 175	4	5	2	3	2	Varies	V2.5 Paired End	360 – 420
HiSeq 4000	250 – 300	15 %	1,350 – 1,550	8	33	13	17	15	Varies	Standard SBS	4,000 – 5,000
NovaSeq 6000 SP	300 – 400	15 %	600 – 800	1	10	4	5	5	Varies	SP Reagent 300 cycles	650 – 800
NovaSeq 6000 S1	300 – 400	15 %	> 80% occupancy	2	21	9	11	10	Varies	S1 Reagent 300 cycles	1,300 – 1,600
NovaSeq 6000 S2	300 - 400	15 %	> 80% occupancy	2	53	21	27	24	Varies	S2 Reagent 300 cycles	3,300 – 4,000
NovaSeq 6000 S4	300 - 400	15 %	> 80% occupancy	4	133	53	68	61	Varies	S4 Reagent 300 cycles	8,000 – 10,000

 Table 9. Recommended sequencing specifications and sample multiplexing for DNA Library.

*MiSeq V3 kit is only available as 600 cycle kit which needs to be run with 2x150bp paired end sequencing
 **HiSeq 2500 V2 SBS Rapid Mode kit is only available as 500 cycle kit which needs to be run with 2x150bp paired end sequencing
 ***Paired-end sequencing required
 *With 10,000 cell output, coverage may be below recommendations.

DNA Library

- Recommended coverage (per cell, per amplicon) = 60 80X
- Formula:
 - Total read pairs needed = number of expected cells x number of amplicons x coverage
 - **Example:** AML (127 amplicons) and 5,000 cells
 - 5,000 x 127 x 70 = **67M read pairs**

Protein Library

- Recommended coverage (per cell) = 30,000X
- Formula:
 - Total read pairs needed = number of expected cells x coverage
 - Example: 5,000 x 30,000 = **150M read pairs**

NOTE DNA Libraries and Protein Libraries may be pooled and sequenced together. However, note that the average sizes differ between both libraries and particular care needs to be taken care when normalizing and pooling DNA and Protein libraries together for sequencing to ensure sufficient read coverage.

If using a patterned sequencing flowcell (eg. Nextseq2000), reduce Protein library input by 25% by volume to ensure sufficient DNA library reads. Contact support@missionbio.com for additional support.

User Guide	MiSeq	HiSeq 2500
System Guide	MiSeq System Guide (PN 1000000061014)	HiSeq 2500 System Guide (PN 15035786)
Denaturing and Diluting Libraries Reference Guide	MiSeq System – Denature and Dilute Libraries Guide (PN 15039740)	HiSeq Systems – Denature and Dilute Libraries Guide (PN 15050107)
Custom Primer Guide	MiSeq System – Custom Primers Guide (PN 15041638)	HiSeq System – Custom Primers Guide (PN 15061846)
cBot System	cBot System - cBot System Guide (PN 15006165)	
User Guide	HiSeq 4000	NovaSeq 6000
System Guide	HiSeq 4000 System Guide (PN 15066496)	NovaSeq 6000 System Guide (PN 1000000019358)
Denaturing and Diluting Libraries Reference Guide	HiSeq Systems – Denature and Dilute Libraries Guide (PN 15050107)	NovaSeq 6000 System Guide (PN 1000000019358)
Custom Primer Guide	HiSeq System – Custom Primers Guide (PN 15061846)	NovaSeq Series – Custom Primers Guide (PN 10000000222266)

 Table 10. Illumina User Guides

Troubleshooting

Step	Problem	Potential Cause	Recommended Action
		DNA cartridge and/or Gasket not properly installed.	Check correct orientation of DNA cartridge and ensure that the Gasket is properly seated on DNA Cartridge.
	Instrument lid does not close.	Multiple Gaskets installed.	Make sure no second Gasket is still attached under the lid before closing.
		One or both pins on the side of the chip door missing.	Ensure that both pins are on either side. Contact Support.
Instrument		Gasket and/or manifold not clean.	Check that the Gasket and manifold are clean and free of dust.
	Instrument reports sealing error message.	DNA cartridge and/or Gasket not properly installed.	Check correct orientation of DNA cartridge and ensure that the Gasket is properly seated on DNA cartridge.
		Multiple Gaskets installed.	Make sure no second Gasket is still attached under the lid before closing.
	Touch screen becomes unresponsive.	Instrument operating system under-powered.	Power cycle instrument by turning it off, wait 20 seconds, and turning it back on.
	Volumes of cell emulsion and/or oil are too low.	Clogged channel on the DNA cartridge.	Contact Support.
Encapsulation		Reagents loaded incorrectly on DNA cartridge.	Ensure proper cartridge reagent loading according to the instructions.
		Instrument lid broken.	Ensure that both pins are on either side. Contact Support.
Barcoding	Volumes of cell emulsion and/or oil are too low in all or a subset of eight tubes.	Subset of channels clogged on the DNA cartridge.	Contact Support.
		DNA cartridge and/or Gasket not properly installed.	Check correct orientation of DNA cartridge and ensure that the Gasket is properly seated on DNA cartridge.

	If only a subset is affected, you may proceed the workflow with the unaffected tubes.	Incorrect reagent loading on DNA cartridge.	Ensure proper cartridge reagent loading following the instructions.
		Instrument lid broken.	Ensure that both pins are on either side. Contact Support.
		UV cleave step omitted.	Repeat the protocol with a fresh aliquot of sample. If the problem persists, contact Support.
Targeted PCR	Low DNA yield < 0.2 ng/µL.	Sample lost during AMPURE cleanup.	Ensure to use fresh 80% EtOH and follow protocol instructions.
	· • • • • • • • • • • • • • • • • • • •	Incorrectly prepared Barcoding Master Mix.	Ensure barcoding master mix and primers are completely thawed and mix thoroughly via vortexing and centrifuging.
		Lost sample during AMPURE cleanup.	Ensure to use fresh 80% EtOH and follow protocol instructions.
Library PCR	Low DNA yield < 1.0 ng/µL.	Incorrectly prepared Library PCR Master Mix.	Ensure to correctly prepare the Library PCR Master Mix with 5 μ L of Library Prep Primer and 5 μ L of one of the eight Library P7 Indices 1 - 8 per sample.
Sequencing	No sequencing data generated/Over clustering	Incorrect library quantification/ Forgot to add PhiX	Requantify library using BioAnalyzer traces, with smear analysis set to 350bp-550bp. Alternatively, run qPCR using Kapa library quantification kit. Ensure PhiX is freshly diluted and included in final loading pool.

Appendices

Frequently Asked Questions (FAQs)

Can I use Tapestri to measure mRNA transcripts in single cells?

No. Tapestri is currently available only for genomic (DNA) single cell analysis.

Can I use my own Library and Targeted PCR reagents?

No. Only the reagents supplied with the Tapestri Single Cell DNA AML, CLL, Myeloid, THP or Custom Bead Kit are fully validated and supported.

Can I analyze more cells by increasing my cell sample concentration?

The Tapestri workflow and instrumentation have been optimized for cell concentrations between 3,000 and 4,000 cells/ μ L. Working with cell concentrations outside of this range is not recommended.

Can I store my emulsions after Cell Encapsulation or Cell Barcoding for a few days before continuing with the protocol?

The Cell Encapsulation emulsions (1 tube) may be stored at 4 °C overnight. The Cell Barcoding emulsions (8 tubes) must be processed immediately to ensure efficient PCR amplification of targets.

Can I use the Nanodrop for both Targeted PCR and Library PCR quantification? For targeted PCR product quantification we strongly suggest using the Qubit Fluorometer and/or Agilent Bioanalyzer. Quantification of the products after Library PCR must be performed with a method that measures the quantity and size of PCR products (i.e., Bioanalyzer, Tapestation). We do not recommend using the Nanodrop to quantify PCR products as concentration measurements may be inaccurate.

How should I pool my samples for sequencing?

Please follow the instructions in the *Tapestri Sample Quantification Tool (PN 40676)*. Individual sample-tube libraries are pooled equimolar yielding a 5 nM pooled library.

Can I pool my Tapestri samples with other Illumina Indexed samples for sequencing? Yes. Please refer to the Appendix of this document for additional information.

Can I run my Tapestri Single-Cell DNA Library on a NextSeq or HiSeq or NovaSeq?

Yes, Mission Bio currently supports MiSeq, HiSeq 2500, HiSeq 4000, NextSeq 550 and NovaSeq 6000 platforms.

What sequencing depth is required, per cell, per amplicon?


Please refer to the *Table 8 - Recommended sequencing specifications and sample multiplexing* on page 44.

Can I design my own primers for the Tapestri Platform?

Yes. Please contact *support@missionbio.com* to learn more about our Custom Panel Program.

Cartridge Map

Lysis Buffer Cell Buffer with Cells Cell Lysate Barcoding Master Mix

Sequence Information for V2 Index Primer 1 - 8

Primer	Sequence i7	Sequence i5
1	CTGATCGT	ATATGCGC
2	ACTCTCGA	TGGTACAG
3	TGAGCTAG	AACCGTTC
4	GAGACGAT	TAACCGGT
5	CTTGTCGA	GAACATCG
6	TTCCAAGG	CCTTGTAG
7	CGCATGAT	TCAGGCTT
8	ACGGAACA	GTTCTCGT

Table A1. Sequence nucleotide information for V2 Index Primer 1 - 8. Sequences are unique to Mission Bio and do not overlap with Illumina's i7 indices (N701 to N729).

Primer	Sequence i7	Sequence i5
1	TAAGGCGA	ATATGCGC
2	CGTACTAG	TGGTACAG
3	AGGCAGAA	AACCGTTC
4	TCCTGAGC	TAACCGGT
5	GGACTCCT	GAACATCG
6	TAGGCATG	CCTTGTAG
7	СТСТСТАС	TCAGGCTT
8	CAGAGAGG	GTTCTCGT

Sequence Information for Protein Index Primer 1 – 8

Table A2. Sequence nucleotide information for V2 Index Primer 1 – 8. Sequences are unique to Mission Bio and do not overlap with Illumina's i7 indices (N701 to N729). *Note, i5 sequences 1 – 8 are identical to the i5 sequences 1 – 8 of the DNA libraries.*

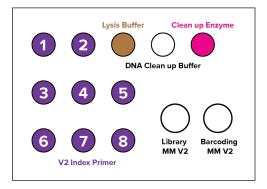
Removing Excess Amounts of Primer Dimers

DNA Library

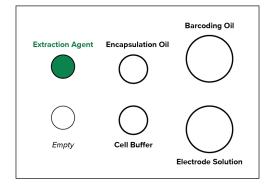
- 1.1 Quantify the amount off primer dimers by measuring the molarity of the low-size off-target products between 100 350 bp (dimer molarity). Quantify the molarity of the on-target products between 350 520 bp (on-target molarity).
- 1.2 Calculate the % of primer dimers as follows: (dimer molarity / on-target molarity) x 100 If the % of primer dimers is > 5 %, follow the steps below:
- **1.3** Add **90 \muL of nuclease-free water** to 10 μ L sample for a total volume of 100 μ L.
- **1.4** Mix and quick-spin the tube to collect the contents.
- **1.5** Add 72 μL of AMPure XP reagent, at room temperature and well-mixed, to the above sample.
- **1.6** Vortex the tube for **5** seconds and quick-spin to collect the contents.
- **1.7** Incubate the tube at room temperature for **5 minutes**.
- **1.8** Place on the magnet and **wait 5 minutes** for the beads to separate from the solution.
- **1.9** Without removing the tube from the magnet, **remove the clear liquid** from the tube and discard.
- **1.10** Add 200 μ L of the freshly prepared 80 % ethanol, wait 30 seconds, and remove 200 μ L of ethanol without disturbing the AMPure beads.
- 1.11 Repeat Step 1.10 once for a total of two wash cycles.
- **1.12 Remove all residual ethanol** from the tube. Take the tube off the magnet and quick-spin.

Place the tube back on the magnet with the caps open and remove any residual ethanol.

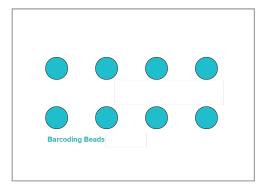
- **1.13** Dry the AMPure bead pellets in the tubes on the magnet by **incubating at room temperature** for **2 5** minutes. *Avoid overdrying the beads.*
- **1.14** Remove the tube from the magnet. **Add 10 μL of nuclease-free water** into the tube. Vortex and quick-spin to collect the contents.
- **1.15** Incubate the tubes at room temperature for **2 minutes**.
- **1.16** Place the tube onto the magnet and wait for at least 2 minutes or until the solutions are clear.
- **1.17** Transfer 8 μL of purified PCR product from the tube to a new 0.2 mL PCR.
- **1.18** Use **1 μL of a 1:10 dilution of the DNA library** and follow Agilent's protocol instructions to prime, load, and run DNA samples from all tubes on a DNA 1000 chip.
- **1.19** Verify the DNA library product sizes and purity and quantify following manufacturer's instructions.

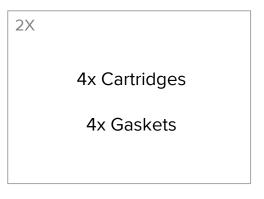

Protein Library

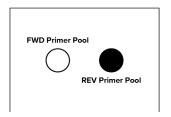
- 1.20 Quantify the amount off primer dimers by measuring the molarity of the low-size off-target products between 100 225 bp (dimer molarity). Quantify the molarity of the on-target products between 220 270 bp (on-target molarity).
- 1.21 Calculate the % of primer dimers as follows: (dimer molarity / on-target molarity) x 100 If the % of primer dimers is > 10 %, follow the steps below:
- **1.22** Add **88 \muL of nuclease-free water** to 12 μ L sample for a total volume of 100 μ L.
- **1.23** Mix and quick-spin the tube to collect the contents.
- **1.24** Add 97 μL of AMPure XP reagent, at room temperature and well-mixed, to the above sample.
- **1.25** Vortex the tube for **5** seconds and quick-spin to collect the contents.
- **1.26** Incubate the tube at room temperature for **5 minutes**.
- **1.27** Place on the magnet and **wait 5 minutes** for the beads to separate from the solution.
- **1.28** Without removing the tube from the magnet, **remove the clear liquid** from the tube and discard.
- **1.29** Add 200 μL of the freshly prepared 80 % ethanol, wait 30 seconds, and remove 150 μL of ethanol without disturbing the AMPure beads.
- **1.30** Repeat Step **1.29 once** for a total of two wash cycles.
- **1.31 Remove all residual ethanol** from the tube. Take the tube off the magnet and quick-spin. Place the tube back on the magnet with the caps open and remove any residual ethanol.
- **1.32** Dry the AMPure bead pellets in the tubes on the magnet by **incubating at room temperature** for **2 5** minutes. *Avoid overdrying the beads.*
- **1.33** Remove the tube from the magnet. **Add 15 μL of nuclease-free water** into the tube. Vortex and quick-spin to collect the contents.
- **1.34** Incubate the tubes at room temperature for **2 minutes**.
- **1.35** Place the tube onto the magnet and wait for at least 2 minutes or until the solutions are clear.
- **1.36** Transfer 12 μ L of purified PCR product from the tube to a new 0.2 mL PCR.
- **1.37** Use **1 μL of a 1:10 dilution of the DNA library** and follow Agilent's protocol instructions to prime, load, and run DNA samples from all tubes on a DNA 1000 chip.
- **1.38** Verify the DNA library product sizes and purity and quantify following manufacturer's instructions.

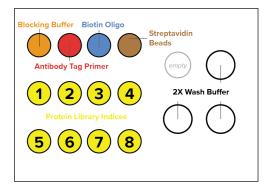


Kit Contents


TAPESTRI SINGLE-CELL DNA CORE -20°C KIT


TAPESTRI SINGLE-CELL DNA CORE AMBIENT KIT


TAPESTRI SINGLE-CELL DNA BEAD KIT


CARTRIDGE KIT

PRIMER POOL KIT

PROTEIN STAINING KIT

References

- 1. Lgr6 is a stem cell marker in mouse skin squamous cell carcinoma. P.Y. Huang et al., *Nature Genetics* 49(11):1624-1632 (2017).
- 2. RNA-Seq following PCR-based sorting reveals rare cell transcriptional signatures. M. Pellegrino, A. Sciambi, J.L. Yates, J. Mast, C. Silver, D.J. Eastburn, *BMC Genomics* 17:361 (2016).
- **3.** Ultrahigh-Throughput Mammalian Single-Cell Reverse-Transcriptase Polymerase Chain Reaction in Microfluidic Drops. D.J. Eastburn, A. Sciambi, A.R. Abate, *Analytical Chemistry* 85, 8016 (2013).
- 4. Microfluidic droplet enrichment for targeted sequencing. D.J. Eastburn, Y. Huang, M. Pellegrino, A. Sciambi, L. Ptáček, A. Abate, *Nucleic Acids Research* Jul 27; 43(13):e86. (2015).
- 5. Picoinjection enables digital detection of RNA with droplet rt-PCR. D.J. Eastburn, A. Sciambi, A.R. Abate, *PLoS ONE* 8(4): e62961 (2013).
- 6. Identification and genetic analysis of cancer cells with PCR-activated cell sorting. D.J. Eastburn, A. Sciambi, A.R. Abate, *Nucleic Acids Research* 42, e128 (2014).

Tapestri Instrument Specifications

- Model: Tapestri Instrument
- Part Number (PN): 191335
- Mains Voltage: 115 VAC
- Frequency: 50/60 Hz
- Current: 2.0 A Max.
- Circuit Breaker: 16 Amp
- Ambient Temperature Range: 15 °C to 30 °C (59 °F 86 °F)
- Relative Humidity (Non-Condensing): 5% to 85%
- Maximum Altitude: 6,562 ft (2,000 m)
- HV Cable Length: 59" (1500 mm)
- Overall Dimensions. H/W/D: 12.5"/31.75 cm x 11.75"/29.85 cm x 12.25"/31.10 cm

Visit <u>www.missionbio.com</u> for additional support.