NATIONAL CANCER INSTITUTE - CANCER.GOV

Contact Information


Primary Contact

Tatiana Karpova
Manager

Location

41 Medlars Drive
Bldg 41/ C615
Bethesda, MD 20892

Overview

The core provides access to several different state-of-the-art 3D microscopes as well as computers to visualize and process image data. The facility houses equipment for 2D or 3D imaging of fixed and living specimens. High resolution images can be obtained by confocal microscopy or deconvolution, and super-resolution techniques SIM, STORM, MINFLUX. Single Molecule tracking is supported on MINFLUX, and custom HILO-illumination microscopes.

Established Technologies

Facility personnel are available for consultation about the design of imaging experiments and/or the analysis of image data. Special expertise is available for assistance with live cell imaging as well as deconvolution microscopy. Facility personnel are also experienced in the other techniques listed below and can provide expertise and software for quantitative analysis of images.

  • 2D or 3D imaging of fixed and living specimens
  • High-resolution imaging using confocal microscopy or deconvolution
  • Protein colocalization
  • Fluorescence photobleaching techniques, such as FRAP
  • Analysis of protein interactions by FRET
  • Super Resolution (SIM; STORM, MINFLUX)
  • Single Molecule Tracking by HILO-illumination and MINFLUX.

Major Instrumentation

  • Delta Vision Elite wide-field deconvolution microscope
  • NIKON  wide-field microscope
  • ELYRA Super Resolution Microscope
  • Carl Zeiss LSM780 Microscope
  • Carl Zeiss LSM880 Microscope
  • Custom HILO-illuminated microscopes
  • MINFLUX nanoresolution/nanotracking microscope
  • Lattice Light Sheet (3i) microscope

User Guidelines

Open to all NCI intramural researchers. Researchers from other NIH institutes are also welcome to contact us. The Core collaborates on Single Molecule Tracking, Nano resolution projects and projects requiring extensive support of core staff and supports and trains users for conventional techniques/microscopes.

New Users interested in using the core’s microscopes must first contact Dr. Karpova. Following the initial request, Dr. Karpova will meet with the user and his/her principal investigator to discuss the research project. Advice will be provided to the user regarding the advantages/limitations of the different forms of microscopy available, both in this core and elsewhere. The staff will also help the user develop an overall research strategy, design experiments, and solve specific experimental problems.

Consultation is also available regarding image analysis and interpretation and/or selection and purchase of microscopy hardware and image processing software.

Publications

  • 1. Rahman, M.A., McKinnon, K.M., Karpova T.S., Ball D.A., Venzon, D. J., Fan, W., Kang, G., Li, Q., and Robert-Guroff, M. (2018) Associations of Simian Immunodeficiency Virus (SIV)-Specific follicular CD8 T cells with Other Follicular T cells suggest complex contributions to SIV Viremia control. J Immunol 200, 2714-2726 2. Mehta G. D., Ball D. A., Eriksson, P. R., Chereji, R. V., Clark D. J., McNally J. G., and Karpova, T. S. (2018) Single-Molecule analysis reveals linked cycles of RSC chromatin remodeling and Ace1p transcription factor binding in yeast. Molecular Cell 72, 875-887 3. Serebryannyy, L. A., Ball, D. A., Karpova T. S., and Misteli, T. (2018) Single molecule analysis of lamin dynamics. Methods 157, 56-65 4. Shah, S., Parmiter, D., Constantine, C., Elizalde, P., Naldrett, M., Karpova, T., and Choy, J. (2019) Glucose signaling is connected to chromosome segregation through Protein Kinase A phosphorylation of Dam1 kinetochore subunit in S. cerevisiae. Genetics 211, 531-547 5. Donovan, B.T., Huyn, A., Ball, D.A., Patel H. P., Poirier, M., Larson, D.R., Ferguson, M.L., Lenstra, TL. (2019) Single-molecule imaging reveals the interplay between transcription factors, nucleosomes, and transcription bursting. EMBO J 38, e100809 6. Chernova, T. A., Yang, Z., Karpova, T. S., Shanks, J. R., Scherbik, N., Wilkinson, K. D., and Chernoff, Y. O. (2020) Aggregation and Prion-Inducing Properties of the G-Protein Gamma Subunit Ste18 are Regulated by Association with the Plasma Membrane. Int J Mol Sci. 21, 5038 7. Shrestha, R., Rossi, A., Wangsa, D., Zaldana, K., Suva, E., Chun, Y., Sanders, C. L., Hogan, A., Difilippantonio, S., Karpova, T. S., Karim, B., Foltz, D. R., Fachinetti, D., Aplan, P., Ried, T., and Basrai, M. (2021) CENP-A overexpression promotes aneuploidy with karyotypic heterogeneity. (2021). J. Cell Biol 220, e202007195 8. Patange, S., Ball, D. A., Karpova, T. S., and Larson, D. R.. (2021). Towards a ‘spot on’ understanding of transcription in the nucleus. J Mol Biol 433, 167016 9. Chen, H., Smith, M., Herz, J., Li, T., Hasley, R., Le Saout, C., Zhu, Z., Cheng, J., Gronda, A., Martina, J. A., Irusta, P. M., Karpova, T.,S., McGavern, D. B., and Catalfamo, M. (2021) The role of protease activated receptor-1 signaling in CD8 T cell effector function. iScience 24, 103387 10. Patange, S., Ball, D. A., Karpova, T. S., Girvan, M., Levens, D., and Larson, D. R. (2022) MYC amplifies gene expression through global changes in transcription factor dynamics. Cell Reports 38, 110292 11. Patange, S., Ball, D. A., Karpova, T. S., Girvan, M., Levens, D., and Larson, D. R. (2022) MYC amplifies gene expression through global changes in transcription factor dynamics. Cell Reports 38, 110292 12. Ball, D. A., Jalloh, B., and Karpova, T. S. (2022) Impact of Saccharomyces cerevisiae on the field of single molecule biophysics. Int. J. Mol. Sci 23, 10.3390/ijms232415895 13. Shrestha, R. L., Balachandra, V., Kim, J. H., Rossi, A., Vadlamani, P., Sethi, S. C., Ozbun, L., Lin, S., Cheng, K. C-C., Chari, R., Karpova, T. S., Pegoraro, G., Foltz, D. R., Caplen, N. J., and Basrai, M. A. (2023) The histone H3/H4 chaperone CHAF1B prevents the mislocalization of CENP-A for chromosomal stability. J. Cell Sci. 136, jcs260944 14. Ahn, J., Zhang, L., Ravishankar, H., Fan, L., Zeng, Y., Kirsh, K. P., Park., J-E., Yun, H-Y., Ghirlando, R., Ma, B., Ball, D. A., Ku, B., Nussinov, R., Karpova, T. S., Kim, S. J., Wang, Y-X., and Lee, K. S. (2023) Architectural basis for cylindrical self-assembly governing Plk4-mediated centriole duplication in humans . Commun Biol. 6(1):712. doi: 10.1038/s42003-023-05067-8 15. Wildner, C., Mehta, G. D., Ball, D. A., Karpova, T. S., and Koeppl, H. (2023) Bayesian analysis of non-stationary transcription in CUP1 locus of Saccharomyces cerevisiae. bioRxiv doi: 10.1101/2023.06.20.545522 16. Balachandra, V., Shrestha, R. L., …, Karpova, T. S., McKinnon, K., Cheng, K., Nielsen, M. L., Groth, A., and Basrai M. A. (2024) DNAJC9 prevents CENP-A mislocalization and chromosomal instability by maintaining the fidelity of histone supply chain. EMBO J. 43(11):2166-2197. doi: 10.1038/s44318-024-00093-6. 17. Correll, C. C., Rudloff, U., Schmit, J. D., Ball, D. A., Karpova, T. S., Balzer, E., Dundr, M., Crossing boundaries of light microscopy resolution discerns novel assemblies in the nucleolus (2024) Histochemistry and Cell Biology. 162(1-2):161-183. doi: 10.1007/s00418-024-02297-7 18. Sethi, S. C., Shrestha, R. L., Balachandra, V., Durairaj, G., Au, W. C., Nirula, M., Karpova, T. S., Kaiser, P., Basrai, M. A. β-TrCP-Mediated Proteolysis of Mis18β Prevents Mislocalization of CENP-A and Chromosomal Instability (2024) Mol Cell Biol. 13:1-14. doi: 10.1080/10985549.2024.2382445

Keywords

Delta Vision Core deconvolution microscopeELYRA Super Resolution MicroscopeFCSFRAPFRETPALMPhotoactivated Localization MicroscopySIMSTORMStructural Illumination MicroscopyZeiss LSM780confocal microscopydeconvolutionImaging and Microscopyfluorescencehigh resolution imagingimaginglive-cell imagingnci-coreoptical sectioningprotein colocalizationNanoresolutionSingle Molecule TrackingMINFLUXLattice Light SheetZeiss LSM 880Custom HILO-illumination microscope