Web Page
Back Services: Biophysics Facility offers fluorometers as open-access instruments. First-time users must complete a short training session before gaining access to the instrument reservation calendar. Location: Building 50, room 3226 Description: Some substances reemit light after Read More...
Web Page
Bioinformatics
01/30/2020 -
Web Page
Confocal
Multicolor imaging Fluorescence imaging is used for protein localization and colocalization in 3D. Multi-color imaging is necessary to observe colocalization of several proteins in the same cell. Many fluorescent proteins are now available for multi-color Read More...
Web Page
Confocal
FRET (Fluorescence Resonance Energy Transfer) FRET is a light microscopy method for detecting protein‐protein interactions within intact cells. FCS (Fluorescence Correlation Spectroscopy) Fluorescence correlation spectroscopy (FCS) is a correlation analysis of fluctuation of the Read More...
Web Page
Bioinformatics
04/10/2025 - This one hour online training introduces participants to the tools and techniques for analyzing and quantifying microscopy images using MATLAB’s low-code algorithms. Participants will learn how to preprocess images, segment regions Read More...
Web Page
Confocal
Techniques The Laboratory of Cancer Biology and Genetics Microscopy Core houses multiple systems that can be used to analyze cell structure, protein expression, and cell dynamics using immunofluorescence. These include inverted epifluorescence microscopes, a confocal Read More...
Web Page
Confocal
2024 Date: Tuesday, October 15, 2024 Time and Location: 11 am EST, ZOOM (INVITATION BY LMIG LIST SERVER) Speaker: Dr. Diego Presman (U Buenos Aires) Title: “Insights on Glucocorticoid Receptor Activity Through Live Cell Imaging” Summary: Eucaryotic transcription factors ( Read More...
Web Page
Confocal
Wide-field microscopy This is the technical term for a conventional fluorescence microscope. Typically the entire field of view of the specimen is illuminated with excitation light and then all of the emitted fluorescence is collected Read More...
Web Page
Confocal
Leica SP8 LSCM with white light laser The SP8 LIGHTNING confocal microscope allows you to make proper and detailed observations of fast biological processes. Your experimental work will have the benefit of super-resolution, high-speed imaging, Read More...
Web Page
Confocal
Software Several software packages are available to users Arivis Vision 4D Arivis Vision4D is a modular software for working with multi-channel 2D, 3D and 4D images of almost unlimited size independent of Read More...
Web Page
Bioinformatics
04/08/2021 - https://nih-irp-singlecell.github.io/SC-UsersGroup/ Presenter: George Emanuel PhD, Co-founder Vizgen, Director of Technology and Partnerships. Abstract: Biological systems are comprised of numerous cell types, intricately organized to form functional tissues and organs. Cell Read More...
Web Page
Bioinformatics
11/17/2020 - Please join us for a brief overview of NCI’s HALO cloud deployment and the first in a series of talks describing HALO-enabled research. Dr. Noemi Kedei, MD, CCR, will cover examples of using Read More...
Bethesda, MD
Core Facility
LCMB Microscopy Core offers live cell imaging technologies as well as super-resolution, fluorescence lifetime and confocal imaging systems for immunofluorescence. Our confocal instruments are a Leica SP8 laser scanning confocal microscope and a Nikon spinning Read More...
NCI-Bethesda, MD
Collaborative
The NCI Research Flow Facility provides cell sorting and benchtop flow cytometry services to NCI investigators. Services are program-specific and are not available to all NCI or NIH investigators. Please inquire as to availability. Established Read More...
Frederick, MD
Core Facility
The function of the SAIP is to collaborate with NCI investigators in the development of mouse models, new molecular imaging probes for early detection and therapy, monitor tumors in vivo, and perform drug efficacy studies Read More...
Bethesda, MD
Trans NIH Facility
The Mouse Imaging Facility (MIF) is a shared, trans-NIH intramural resource for animal imaging studies. MIF provides access to state-of-the-art radiological imaging methods optimized for mice, rats, other animals, and tissue samples. MIF provides intellectual, Read More...
Frederick, MD
Core Facility
The Biophysics Resource (BR) was established in January 2001. Our mission is to provide CCR investigators with access to both the latest instrumentation and expertise in characterizing the biophysical aspects of systems under structural investigation. The Read More...
Web Page
Back Services: Biophysics Facility offers Tycho as an open-access instrument. This instrument is very easy to use, and no formal training is required. Core staff will help with their first experiment of new Read More...
Web Page
.row { display: flex; justify-content: space-around; align-items: flex-start; margin: 20px; } .column { text-align: center; padding: 10px; width: 30%; } .column img { display: block; margin: 0 auto; width: 150px; height: 150px; } .column strong { display: block; margin-top: 10px; } Background: Intravital microscopy (IVM) Read More...
Bethesda, MARYLAND
Core Facility
The CCR Microscopy Core provides NCI investigators access to state-of-the-art imaging tools and techniques, including light sheet fluorescence, high-resolution confocal, multi-photon, and super-resolution microscopy. The mission of the CCR Microscopy Core Facility is to support Read More...
Web Page
CREx Monthly Newsletter Learn about the NIH Collaborative Research Exchange (CREx), Core Facilities, Webinars, & More New NIH Resource Resources Derive Greater Insights and Accelerate your Research Using Bioinformatic Tools! CREx is an NIH Read More...
Web Page
CREx Monthly Newsletter Learn about the NIH Collaborative Research Exchange (CREx), Core Facilities, Webinars, & More New NIH Resource Resources Advance your research with the NIH Mouse Imaging Facility (MIF) The NIH Mouse Imaging Read More...
Web Page
Back Services: Biophysics Facility offers MDS as an open-access instrument. First-time users must complete a short training session before gaining access to the instrument reservation calendar. Training includes the KD determination of a standard molecular Read More...
Rockville, MD
Core Facility
Trans NIH Facility
The Functional Genomics Laboratory (formerly, the RNAi Screening Facility) of the National Center for Advancing Translational Sciences (NCATS) assist investigators with all stages of project planning and execution, beginning with assay development through genome-wide siRNA Read More...
Web Page
Confocal
Our Mission The NCI Optical Microscopy Cores are instrumental in advancing cancer research through optical measurements and analysis. Serving the Center for Cancer Research community, which is home to approximately 250 Principal and Senior Investigators across 50 Read More...
Web Page
Confocal
Our Team Tatiana S. Karpova Ph.D.Core Headkarpovat@nih.govBuilding 41, Room C615240-760-6637 David A. Ball Ph.D.Core Biologistballa@nih.govBuilding 41, Room B114D240-760-6577 Mohamadreza Fazel, Ph.D.Core Biologistmohamadreza. Read More...
Web Page
Confocal
Software Image Acquisition Commercial imaging systems of LRBGE Optical Microscopy Core are controlled by acquisition software specifically designed for the appropriate microscope, such as ZEN (Zeiss confocal microscopes), Nikon Elements (Nikon), Imspector (Abberior). Custom-built HILO Read More...
Web Page
Confocal
Software LAS Leica Application Suite X (LAS X) is the one software platform for all Leica microscopes: It integrates confocal, wide field, stereo, super-resolution, and light-sheet instruments from Leica Microsystems. MetaMorph The MetaMorph® Microscopy Automation Read More...
Web Page
Confocal
ZEISS Elyra 7 with Lattice SIM² Type: Wide-field structured illumination microscope Capabilities: Super resolution 2D and 3D imaging of live or fixed cells Apotome SIM: 170 nm lateral, 450 nm axial Apotome SIM2: 140 nm lateral, 300 nm axial Lattice Read More...
Web Page
Bioinformatics
The computational chemistry and protein modeling team in the Advanced Biomedical Computational Science (ABCS) group provides novel solutions in structural modeling and computational chemistry. Computational scientists in the group collaborate with NCI researchers by using Read More...
Web Page
Bioinformatics
The Advanced Biomedical Computational Science (ABCS) group focuses on applications of bioinformatics, computational and data science, and artificial intelligence to support NCI researchers. ABCS provides: • Subject matter expertise in genomics, proteomics, and imaging. • Machine learning/ Read More...
Web Page
Bioinformatics
The Advanced Biomedical Computational Science (ABCS) group focuses on applications of bioinformatics, computational and data science, and artificial intelligence to support NCI researchers. ABCS provides: Subject matter expertise in genomics, proteomics, and imaging. Machine learning/ Read More...
Bethesda, MD
Core Facility
The core provides access to several different state-of-the-art 3D microscopes as well as computers to visualize and process image data. The facility houses equipment for 2D or 3D imaging of fixed and living specimens. High Read More...
Frederick, MD
Core Facility
OMAL focuses its research and development activities to quantitatively understand the molecular basis of three-dimensional (3D) cell organization, motility, invasion, and differentiation using fixed samples and live, 3D tissue culture models (i.e., translational models). Read More...
Bethesda, MD
Core Facility
The Biophysics Core’s mission is to provide support in the study of macromolecular interactions, dynamics, and stability by offering consultations, training, professional collaborations, and instrument access. General Services: Multi-technique molecular interaction studies, Kinetic and Read More...
Bethesda, MD
Collaborative
The NCI High-Throughput Imaging Facility (HiTIF) works in a collaborative fashion with NCI/NIH Investigators by providing them with the necessary expertise, instrumentation, and software to develop and execute advanced High-Throughput Imaging (HTI) assays. These Read More...
Bethesda, MD
Core Facility
The LCBG Microscopy Core offers imaging technologies and training. The Core has established instrumentation for for 2D and 3D imaging of both fixed and living specimens.
Web Page
Many established and emerging technologies are available to CCR scientists. This technology-rich environment makes the CCR a unique place to conduct scientific research. Through the OSTR, the CCR continues to find Read More...
Web Page
Back Services: Biophysics Facility offers ZetaView as an open-access instrument. First-time users must complete a short training session before using it for the first time. Training includes instrument calibration and size analysis of a standard Read More...
Frederick, MD
Core Facility
Molecular Cytogenetics Core Facility facilitates the assessment of structural and numerical genomic changes in pre-cancer and cancer research models. This core provides comprehensive support for the cytogenetic analysis of cells from human and research animal Read More...
Web Page
Home About the Biophysics Core Biophysics Core Services [tabby title="Instrumentation"] NHLBI Biophysics Core The Biophysics Core Facility: Overview Core Facilities provide scientific resources, cutting-edge technologies and novel approaches to support DIR scientists. Availability of Read More...
Web Page
Back Services: Biophysics Facility offers DSC as an open-access instrument. First-time users must complete training before gaining access to the instrument reservation calendar. Location: Building 50, room 3123 Description: The differential scanning calorimeter measures the constant pressure Read More...
Frederick, MD
Collaborative
The Antibody Characterization Laboratory (ACL) is the laboratory responsible for the development of well-characterized monoclonal antibody reagents. The NCI’s Office of Cancer Clinical Proteomics Research funds ACL as a resource to the entire cancer Read More...
Bethesda, MD
Trans NIH Facility
The Biomedical Engineering and Physical Science (BEPS) shared resource supports NIH’s intramural basic and clinical scientists on applications of engineering, physics, imaging, measurement, and analysis. BEPS is centrally located on the main NIH campus Read More...
Bethesda, MD
Trans NIH Facility
The facilities at AIM are available for use by the entire NIH intramural research community. While we welcome users with any size imaging project, AIM specializes in large, yearlong (or longer), collaborative research efforts with Read More...
Web Page
Back Services: Biophysics Facility offers MST as an open-access instrument. First-time users must complete a short training session before gaining access to the instrument reservation calendar. Training includes the KD determination of a Read More...
Bethesda, MD
Collaborative
Our operational objectives are to provide state-of-the-art OMICS technologies in support of the Genetics Branch (GB) investigators and collaborators. Research Services Wet Lab Single cell isolation from fresh, frozen, and FFPE tissue, DNA/RNA extractions Read More...
Rockville, MD
Trans NIH Facility
The Chemistry and Synthesis Center (CSC) of the National Heart, Lung, and Blood Institute (NHLBI) provides IRP scientists with targeted imaging probes and chemical tools that help accelerate cell-based assays, in vivo imaging studies, and Read More...
Web Page
Confocal
Ross Lake, B.A.Core Headlaker@mail.nih.govBuilding 37, Room 1066240-760-6824 Ross Lake joined the Microscopy Core of the Laboratory of Genitourinary Cancer Pathogenesis (LGCP) in 2003. He became the Core Head of the Core Read More...
Web Page
Confocal
Zeiss LSM980 with Airyscan 2 Confocal Microscope Inverted microscope Two PMTs and four GaAsP detectors for confocal imaging 4 color Airyscan 2 “super-resolution” detector Airyscan Multiplex modes for increased acquisition speed with high sensitivity 5x, 10x, 20x, 40x, 63 Read More...
Web Page
Confocal
WIDE-FIELD MICROSCOPY Nikon Ti 2000 wide-field microscope Capabilities: This microscope is suited for live cell imaging (4D) and fixed cells (3D) imaging. This microscope produces high quality wide-field images that may be improved by Read More...
Web Page
Confocal
Zeiss LSM 880 NLO Laser Scanning Microscope Laser scanning microscope: 355nm UV laser 405nm, 594nm, 561nm and 633nm diode lasers Argon laser (458nm, 488nm and 514nm lines) Coherent Chameleon Vision II tunable (680nm – 1080nm) IR multiphoton Read More...
Web Page
Confocal
Gianluca Pegoraro, PhD gianluca.pegoraro@nih.gov Facility Head 240-760-6696 Bldg. 41, Room B909 Dr. Pegoraro received his Ph.D. in Molecular Genetics from the International School of Superior Studies in Trieste, Italy in 2004. After Read More...
Web Page
Confocal
A typical HTI screening project at HiTIF can be subdivided in 5 phases: Pre-Development The investigator contacts the Facility Head to inquire about the current availability of instrumentation time and manpower for the project to be Read More...
Web Page
Confocal
Yokogawa CV8000 High-throughput spinning disk confocal microscope The Yokogawa CV8000 is HiTIF second high-throughput imaging system. The CV8000 feature set is similar to the CV7000.When compared to the latter, the CV8000 has a newer Read More...
Web Page
Confocal
Stephen Lockett, Ph.D. Director, OMAL locketts@nih.gov 301-846-5515 Valentin Magidson, Ph.D. Scientist magidsonv@mail.nih.gov 301-846-6092 Will Heinz, Ph.D. Scientist heinzwf@nih.gov 301-846-1239 David Read More...
Web Page
Confocal
Confocal Microscope Image of Fixed Mouse Embryonic Fibroblast (MEF) Cells Actin proteins (stained red) and Tubulin proteins (stained green) are involved in a number of cellular process such as cell motility, cell division and maintenance Read More...
Web Page
Confocal
2024 Coutinho, L. L., Femino, E. L., Gonzalez, A. L., Moffat, R. L., Heinz, W. F., Cheng, R. Y. S., Lockett, S. J., Rangel, M. C., Ridnour, L. A. & Wink, D. A. NOS2 and Read More...
Web Page
Confocal
Training We recommend that users become familiar with the principals of fluorescence labeling and optical microscopy before arranging for training. We recommend the following sites for learning about microscopy: Introductions to Fluorescence Microscopy Fluorescence Labeling Read More...
Web Page
Confocal
Research Mission The goal of OMAL’s research is to understand molecular mechanisms driving carcinogenesis and the reversal of this process through treatment, by utilization and advancement of optical microscopy techniques. These techniques include multiplex Read More...
Web Page
Confocal
Nikon SoRa Spinning Disk Capabilities: Inverted microscope Photo-metrics BSI sCMOS camera Yokogawa SoRa CSU-W1 spinning disk unit Super-resolution, confocal and wide-field imaging modes 4x, 10x, 20x and 60x objective lenses Mad City Labs 500 mm piezo Read More...
Web Page
Confocal
General Microscopy Resources Confocal Listserv Email discussion list focused on confocal microscopy, but also including topics on fluorescence microscopy and digital imaging. MicroscopyU Online learning platform by Nikon. An online source for Microscopy education. Leica Read More...